期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
多尺度EPI融合的密集光场解耦重建
1
作者 曹捷 吴玉静 +2 位作者 张倩 孟春丽 严涛 《上海大学学报(自然科学版)》 北大核心 2025年第3期530-542,共13页
为了充分挖掘光场极平面视图(epipolar plane image,EPI)之间的内在相关性,同时强化对空间信息的有效捕捉,提出了一种多尺度EPI信息融合的密集光场解耦重建方法.该方法对空间维度和极平面维度进行了更深层次的特征利用,能够更好地捕捉... 为了充分挖掘光场极平面视图(epipolar plane image,EPI)之间的内在相关性,同时强化对空间信息的有效捕捉,提出了一种多尺度EPI信息融合的密集光场解耦重建方法.该方法对空间维度和极平面维度进行了更深层次的特征利用,能够更好地捕捉子孔径视图间的角度相关性,通过解耦与融合多种信息,提高了光场重建的精度和效果.首先,在四维光场数据的基础上,增加了密集的空间维度,提升了网络的泛化能力,并增强了其对图像局部结构和纹理信息的理解.其次,为了更好地补充和增强极平面间的信息互补性,设计了一个极平面融合模块,并提出了一种新的多尺度卷积注意力机制来融合特征信息.该注意力机制通过多尺度特征提取与全局关注机制,能有效捕捉角度信息,增强重要特征表达并抑制冗余内容.最后,在HCInew、HCIold和Stanford等光场数据集上进行实验.结果表明,本方法在峰值信噪比(peak signal-to-noise ratio,PSNR)和结构相似性(structural similarity,SSIM)等评价指标上优于现有的最先进的SOTA(state-of-the-art)方法,在大多数测试场景中实现了更好的重建效果. 展开更多
关键词 光场 光场解耦 密集特征提取 极平面融合 角度超分辨率
在线阅读 下载PDF
基于自监督的主动标签清洗
2
作者 林晓 张秋阳 +1 位作者 郑晓妹 杨启哲 《图学学报》 CSCD 北大核心 2024年第3期495-504,共10页
主动标签清洗利用主动学习来进行标签噪声处理,以降低人工标注成本。现有的主动标签清洗方法仍然存在人工额外标注成本较高的问题,即挑选出的可疑样本中正确样本所占比例较高。为了缓解这一问题,提出了一种基于核心集的自监督主动标签... 主动标签清洗利用主动学习来进行标签噪声处理,以降低人工标注成本。现有的主动标签清洗方法仍然存在人工额外标注成本较高的问题,即挑选出的可疑样本中正确样本所占比例较高。为了缓解这一问题,提出了一种基于核心集的自监督主动标签清洗方法。首先利用自监督任务进行表征学习,随后将数据映射到特征空间中,并利用贪婪的K-Center集合覆盖方法挑选出可疑样本,最后根据不确定性筛选出标签噪声样本进行重标注。并同时考虑到了样本的代表性与不确定性,能够有效降低可疑样本中正确样本的比例。在含有不同比例标签噪声的公开数据集上的实验结果表明,在各迭代轮次中明显地降低了人工额外标注成本,同时也在一定程度上缓解了冷启动问题。此外,还通过消融实验证明了方法中自监督核心集采样模块和不确定性预测模块的有效性。 展开更多
关键词 主动学习 自监督学习 标签噪声 标签清洗 人工额外标注成本
在线阅读 下载PDF
基于裁剪近端策略优化算法的软机械臂不规则物体抓取 被引量:2
3
作者 余家宸 杨晔 《计算机应用》 CSCD 北大核心 2024年第11期3629-3638,共10页
为应对传统深度强化学习(DRL)算法在处理复杂场景,特别是在不规则物体抓取和软体机械臂应用中算法稳定性和学习率较差的问题,提出一种基于裁剪近端策略优化(CPPO)算法的软体机械臂控制策略。通过引入裁剪函数,该算法优化了近端策略优化(... 为应对传统深度强化学习(DRL)算法在处理复杂场景,特别是在不规则物体抓取和软体机械臂应用中算法稳定性和学习率较差的问题,提出一种基于裁剪近端策略优化(CPPO)算法的软体机械臂控制策略。通过引入裁剪函数,该算法优化了近端策略优化(PPO)算法的性能,提升了它在高维状态空间的稳定性和学习效率。首先定义了软体机械臂的状态空间和动作空间,并设计了模仿八爪鱼触手的软体机械臂模型;其次利用Matlab的SoRoSim(Soft Robot Simulation)工具箱进行建模,同时定义了结合连续和稀疏函数的环境奖励函数;最后构建了基于Matlab的仿真平台,通过Python脚本和滤波器对不规则物体图像进行预处理,并利用Redis缓存高效传输处理后的轮廓数据至仿真平台。与TRPO(Trust Region Policy Optimization)和SAC(Soft Actor-Critic)算法的对比实验结果表明,CPPO算法在软体机械臂抓取不规则物体任务中达到了86.3%的成功率,比TRPO算法高出了3.6个百分点。这说明CPPO算法可以应用于软体机械臂控制,可在非结构化环境下为软体机械臂在复杂抓取任务中的应用提供重要参考。 展开更多
关键词 深度强化学习 近端策略优化算法 不规则物体检测 软体机械臂 机械臂抓取
在线阅读 下载PDF
基于SASGAN的戏剧脸谱多样化生成 被引量:2
4
作者 古天骏 熊苏雅 林晓 《图学学报》 CSCD 北大核心 2024年第1期102-111,共10页
为解决现有自动生成的戏剧脸谱在分辨率和真实性上效果不佳的问题,提出了基于自注意力机制的风格化生成对抗网络(SASGAN)。首先在StyleGAN的基础上引入了自注意力机制以及矢量量化方法,增强了对脸谱图案几何结构特征的提取,接着通过多... 为解决现有自动生成的戏剧脸谱在分辨率和真实性上效果不佳的问题,提出了基于自注意力机制的风格化生成对抗网络(SASGAN)。首先在StyleGAN的基础上引入了自注意力机制以及矢量量化方法,增强了对脸谱图案几何结构特征的提取,接着通过多样化差异性增强(DDG)扩充数据,采用脸谱色调辅助算法对DDG方法进行补充,建立了包含12599张图像的戏剧脸谱数据集,最后在此数据集上进行训练,生成了兼顾多样性和真实性的脸谱图像。实验结果表明,对于戏剧脸谱图像,DDG方法较传统方法在数据增广方面有着较大提升,而SASGAN则提升了戏剧脸谱图像的分辨率和真实性,在主观视觉上得到了理想的效果。 展开更多
关键词 戏剧脸谱 生成对抗网络 图像生成 注意力机制 矢量量化
在线阅读 下载PDF
显著区域保留的图像风格迁移算法 被引量:12
5
作者 林晓 屈时操 +2 位作者 黄伟 郑晓妹 马利庄 《图学学报》 CSCD 北大核心 2021年第2期190-197,共8页
基于神经网络的风格迁移成为近年来学术界和工业界的热点研究问题之一。现有的方法可以将不同风格作用在给定的内容图像上生成风格化图像,并且在视觉效果和转换效率上有了较大提升,而侧重学习图像底层特征容易导致风格化图像丢失内容图... 基于神经网络的风格迁移成为近年来学术界和工业界的热点研究问题之一。现有的方法可以将不同风格作用在给定的内容图像上生成风格化图像,并且在视觉效果和转换效率上有了较大提升,而侧重学习图像底层特征容易导致风格化图像丢失内容图像的语义信息。据此提出了使风格化图像与内容图像的显著区域保持一致的改进方案。通过加入显著性检测网络生成合成图像和内容图像的显著图,在训练过程中计算两者的损失,使合成图像保持与内容图像相一致的显著区域,这有助于提高风格化图像的质量。实验表明,该风格迁移模型生成的风格化图像不仅具有更好的视觉效果,且保留了内容图像的语义信息。特别是对于显著区域突出的内容图像,保证显著区域不被扭曲是生成视觉友好图像的重要前提。 展开更多
关键词 风格迁移 图像变换 显著区域保留 卷积神经网络 显著性检测
在线阅读 下载PDF
利用多尺度特征联合注意力模型的图像修复 被引量:9
6
作者 林晓 周云翔 +2 位作者 李大志 黄伟 盛斌 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2022年第8期1260-1271,共12页
当前,基于深度学习的图像修复方法在获取深层特征时会造成信息丢失的现象,不利于纹理细节的修复;且往往忽略语义特征的修复,会生成具有不合理结构的修复结果.针对上述问题,提出基于多尺度特征联合注意力模型的图像修复网络.首先提出基... 当前,基于深度学习的图像修复方法在获取深层特征时会造成信息丢失的现象,不利于纹理细节的修复;且往往忽略语义特征的修复,会生成具有不合理结构的修复结果.针对上述问题,提出基于多尺度特征联合注意力模型的图像修复网络.首先提出基于扩张卷积的多尺度融合模块,在获取图像深度特征时通过多尺度特征的融合减少卷积过程中信息的丢失;然后提出联合注意力机制,既加强了模型对图像语义修复的能力,又确保了模型可以生成纹理清晰的修复结果;为保证修复结果细节和风格的一致性,最后将风格损失与感知损失引入网络.在CelebA-HQ和Places2数据集上的定性实验结果和PSNR,SSIM等常用的评价指标验证了所提方法优于已有的图像修复方法.相较于对比方法,所提方法的PSNR和SSIM分别提升了0.4%~6%和0.4%~3%. 展开更多
关键词 图像修复 深度学习 多尺度特征融合 注意力机制
在线阅读 下载PDF
社交网络中基于K核分解的意见领袖识别算法 被引量:2
7
作者 李美子 米一菲 +1 位作者 张倩 张波 《计算机应用》 CSCD 北大核心 2022年第1期26-35,共10页
针对在社交网络中挖掘意见领袖时存在的计算复杂度高的难题,提出了一种基于K核分解的意见领袖识别算法CR。首先,基于K核分解方法获取社交网络中的意见领袖候选集,以缩小识别意见领袖的数据规模;然后,提出包括位置相似性和邻居相似性的... 针对在社交网络中挖掘意见领袖时存在的计算复杂度高的难题,提出了一种基于K核分解的意见领袖识别算法CR。首先,基于K核分解方法获取社交网络中的意见领袖候选集,以缩小识别意见领袖的数据规模;然后,提出包括位置相似性和邻居相似性的用户相似性的概念,利用K核值、入度数、平均K核变化率和用户追随者个数计算用户相似性,并根据用户相似性对候选集中的用户计算全局影响力;最后,根据用户全局影响力对意见领袖候选集中的用户进行排序,从而识别意见领袖。在实验部分使用独立级联模型(ICM)预测的用户影响力和中心性两种评价指标在三个大小不同的真实数据集上对所提算法选出的意见领袖集进行评估,并将该算法与其他三种识别意见领袖的算法对比,结果表明该算法选出的影响力Top-15的用户平均影响力以21.442高于其他三个算法。另外,与四种与K核相关的算法做相关性指标对比的结果表明,CandidateRank算法总体来说效果较好。综上,CandidateRank算法在降低计算复杂度的同时提高了准确性。 展开更多
关键词 K核分解 意见领袖 用户相似性 社交网络 独立级联模型
在线阅读 下载PDF
基于优化插值与差值神经网络算法的硅片刻蚀深度预测模型 被引量:1
8
作者 黄涛 王飞 杨晔 《计算机应用》 CSCD 北大核心 2021年第S02期108-112,共5页
针对半导体加工工艺复杂、成本高、工艺数据量少,一般的人工神经网络(ANN)算法无法准确预测其加工工艺性能的问题,提出一种基于优化插值与差值神经网络(OIDNN)算法的适用于小样本的硅片刻蚀深度预测模型。首先,分别由实验得到刻蚀深度... 针对半导体加工工艺复杂、成本高、工艺数据量少,一般的人工神经网络(ANN)算法无法准确预测其加工工艺性能的问题,提出一种基于优化插值与差值神经网络(OIDNN)算法的适用于小样本的硅片刻蚀深度预测模型。首先,分别由实验得到刻蚀深度的实验数据,由计算机辅助设计(TCAD)技术仿真得到刻蚀深度的模拟数据,并划分为训练集、验证集和预测集;将TCAD模拟数据作为额外输入参数插入ANN1模型,同时,将实验数据与TCAD模拟数据的差值作为ANN2模型的输出参数,得到两份预测结果;最后将两份预测结果作为输入参数,经ANN3模型训练选择权重,得到最终预测结果。OIDNN算法在不同大小的样本数量下,所得预测刻蚀深度和实验刻蚀深度之间平均的均方误差(MSE)为0.009 5μm,相较于ANN减小80%以上,相较于自适应权值神经网络(AWNN)减小85%以上。实验结果表明,所提模型可以有效提高预测的准确度,提高算法的收敛速度,并且适用于小样本的工程应用场景。 展开更多
关键词 半导体加工工艺 机器学习 小样本 硅片刻蚀 神经网络 计算机辅助设计
在线阅读 下载PDF
一种卷积自编码深度学习的空气污染多站点联合预测模型 被引量:4
9
作者 张波 陆云杰 +1 位作者 秦东明 邹国建 《电子学报》 EI CAS CSCD 北大核心 2022年第6期1410-1427,共18页
城市空气污染因空间扩散特性呈现出区域内的浓度高关联性.因此如何通过多个空气污染监测站的时空数据预测特定目标地点的污染情况,以解决站点分布不匀的问题,是一个重要的研究工作.本文结合空气污染物因素特性和气象因素的多维度影响,... 城市空气污染因空间扩散特性呈现出区域内的浓度高关联性.因此如何通过多个空气污染监测站的时空数据预测特定目标地点的污染情况,以解决站点分布不匀的问题,是一个重要的研究工作.本文结合空气污染物因素特性和气象因素的多维度影响,提出了一个利用区域内多站点空间监测数据实现特定目标站点的空气污染物浓度预测模型.该模型通过多层卷积神经网络(Convolutional Neural Network,CNN)实现城市多站点污染物浓度与气象数据之间的维度关联特征及空间关联特征学习,进而利用基于多层长短期记忆网络(Long Short-Term Memory,LSTM)的自编码网络实现多站点浓度的时序关联特征分析.实验通过真实数据集验证,所提出的预测模型获得了高于传统机器学习污染物浓度预测模型的预测准确度,且在多个城市数据集上验证了模型的泛化能力. 展开更多
关键词 深度学习 空气污染 时空数据 多站点联合预测 卷积神经网络 长短期记忆网络
在线阅读 下载PDF
基于多变量公钥密码系统的环机密交易协议 被引量:1
10
作者 洪璇 袁梦玲 《计算机科学》 CSCD 北大核心 2023年第S01期746-751,共6页
与比特币类似,门罗币也是一种加密货币。最初的门罗币是基于CryptoNote协议,该协议使用环签名和一次密钥来隐藏交易双方的真实身份,但是具体的交易金额却暴露在区块链中,存在一定的安全风险。为了解决这个安全漏洞,Shen Noether提出了... 与比特币类似,门罗币也是一种加密货币。最初的门罗币是基于CryptoNote协议,该协议使用环签名和一次密钥来隐藏交易双方的真实身份,但是具体的交易金额却暴露在区块链中,存在一定的安全风险。为了解决这个安全漏洞,Shen Noether提出了环机密交易协议(RingCT),利用一个随机数来隐藏真正的交易金额。目前门罗币社区使用的环机密交易协议是基于离散对数难题的。然而随着量子计算机的发展,基于传统数论问题的方案将变得不再安全,后量子方案是一个很好的替代选择。多变量公钥密码学是后量子密码的主要研究方向之一,并且相较于其他后量子密码方案,基于多变量的签名方案往往在签名和验证过程中计算速度快、所需计算资源少,具有很好的研究价值。在多变量环签名方案的基础上,设计了一个基于多变量的环机密交易协议。该协议利用多变量签名方案公钥的加法同态性实现了对交易金额的承诺,并对此承诺进行环签名,通过随机选择区块链中的用户公钥成环,来混淆交易中实际的交易参与者的身份。同时在交易产生过程中会利用交易者的私钥生成唯一一个key-image,并让其参与签名生成过程,成为签名的一部分,通过比对此部分可以有效防止交易双花。在随机预言机模型中证明了本文方案的安全性,并且相比基于格的后量子安全的环机密交易协议,所提方案在签名效率以及验证效率方面都更具优势。 展开更多
关键词 多变量公钥密码 后量子 环签名 环机密交易协议 同态承诺
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部