动态障碍物一直是阻碍智能体自主导航发展的关键因素,而躲避障碍物和清理障碍物是两种解决动态障碍物问题的有效方法。近年来,多智能体躲避动态障碍物(避障)问题受到了广大学者的关注,优秀的多智能体避障算法纷纷涌现。然而,多智能体清...动态障碍物一直是阻碍智能体自主导航发展的关键因素,而躲避障碍物和清理障碍物是两种解决动态障碍物问题的有效方法。近年来,多智能体躲避动态障碍物(避障)问题受到了广大学者的关注,优秀的多智能体避障算法纷纷涌现。然而,多智能体清理动态障碍物(清障)问题却无人问津,相对应的多智能体清障算法更是屈指可数。为解决多智能体清障问题,文中提出了一种基于深度确定性策略梯度与注意力Critic的多智能体协同清障算法(Multi-Agent Cooperative Algorithm for Obstacle Clearance Based on Deep Deterministic Policy Gradient and Attention Critic, MACOC)。首先,创建了首个多智能体协同清障的环境模型,定义了多智能体及动态障碍物的运动学模型,并根据智能体和动态障碍物数量的不同,构建了4种仿真实验环境;其次,将多智能体协同清障过程定义为马尔可夫决策过程(Markov Decision Process, MDP),构建了多智能体t的状态空间、动作空间和奖励函数;最后,提出一种基于深度确定性策略梯度与注意力Critic的多智能体协同清障算法,并在多智能体协同清障仿真环境中与经典的多智能体强化学习算法进行对比。实验证明,相比对比算法,所提出的MACOC算法清障的成功率更高、速度更快,对复杂环境的适应性更好。展开更多
多任务优化算法在各任务单独优化的同时进行任务间的知识迁移,从而提升多个任务的综合性能。然而,在相似度较低的任务间进行负向知识迁移反而会导致整体性能下降,且为难度不同的任务分配同等的计算资源会造成资源浪费。此外,在任务的不...多任务优化算法在各任务单独优化的同时进行任务间的知识迁移,从而提升多个任务的综合性能。然而,在相似度较低的任务间进行负向知识迁移反而会导致整体性能下降,且为难度不同的任务分配同等的计算资源会造成资源浪费。此外,在任务的不同阶段采用固定的搜索步长容易陷入局部最优。为解决上述问题,提出了一种基于自适应知识迁移与动态资源分配的多任务协同优化(Multitask Cooperative Optimization Algorithm Based on Adaptive Knowledge Transfer and Resource Allocation,AMTO)算法。首先,每个任务用一个单独的种群进行优化,并将一个种群分成3个子种群,采用3种不同的搜索策略,增加搜索行为的多样性,并且在单个任务内根据个体成功率来动态更新搜索步长,增强自适应搜索能力,避免陷入局部最优;其次,利用多个任务间知识迁移的反馈结果在线计算任务间相似度,并依据相似度自适应地调整迁移概率,同时,在相似度较低的任务间进行迁移时还需减去任务偏差,减小负向知识迁移造成的性能下降程度,提升算法对任务间差异的感知能力;然后,通过评估任务性能的提升度来估计任务难度与优化状态,对不同难度与状态的任务动态按需分配资源,最大限度地提升资源的利用率,减少资源浪费;最后,在简单与复杂两类多任务优化函数上,将本文算法与经典的多任务算法进行对比实验,验证了本文算法中自适应迁移策略、动态资源分配策略及其综合的有效性。展开更多
文摘大规模稀疏多目标优化问题(Sparse Multiobjective Optimization Problems,SMOPs)广泛存在于现实世界。为大规模SMOPs提出通用的解决方法,对于进化计算、控制论和机器学习等领域中的问题解决都具有推动作用。由于SMOPs具有高维决策空间和Pareto最优解稀疏的特性,现有的进化算法在解决SMOPs时,很容易陷入维数灾难的困境。针对这个问题,以稀疏分布的学习为切入点,提出了一种基于在线学习稀疏特征的大规模多目标进化算法(Large-scale Multiobjective Evolutio-nary Algorithm Based on Online Learning of Sparse Features,MOEA/OLSF)。具体地,首先设计了一种在线学习稀疏特征的方法来挖掘非零变量;然后提出了一种稀疏遗传算子,用于非零变量的进一步搜索和子代解的生成,在非零变量搜索过程中,其二进制交叉和变异算子也用于控制解的稀疏性和多样性。与最新的优秀算法在不同规模的测试问题上的对比结果表明,所提算法在收敛速度和性能方面均更优。
文摘动态障碍物一直是阻碍智能体自主导航发展的关键因素,而躲避障碍物和清理障碍物是两种解决动态障碍物问题的有效方法。近年来,多智能体躲避动态障碍物(避障)问题受到了广大学者的关注,优秀的多智能体避障算法纷纷涌现。然而,多智能体清理动态障碍物(清障)问题却无人问津,相对应的多智能体清障算法更是屈指可数。为解决多智能体清障问题,文中提出了一种基于深度确定性策略梯度与注意力Critic的多智能体协同清障算法(Multi-Agent Cooperative Algorithm for Obstacle Clearance Based on Deep Deterministic Policy Gradient and Attention Critic, MACOC)。首先,创建了首个多智能体协同清障的环境模型,定义了多智能体及动态障碍物的运动学模型,并根据智能体和动态障碍物数量的不同,构建了4种仿真实验环境;其次,将多智能体协同清障过程定义为马尔可夫决策过程(Markov Decision Process, MDP),构建了多智能体t的状态空间、动作空间和奖励函数;最后,提出一种基于深度确定性策略梯度与注意力Critic的多智能体协同清障算法,并在多智能体协同清障仿真环境中与经典的多智能体强化学习算法进行对比。实验证明,相比对比算法,所提出的MACOC算法清障的成功率更高、速度更快,对复杂环境的适应性更好。
文摘多任务优化算法在各任务单独优化的同时进行任务间的知识迁移,从而提升多个任务的综合性能。然而,在相似度较低的任务间进行负向知识迁移反而会导致整体性能下降,且为难度不同的任务分配同等的计算资源会造成资源浪费。此外,在任务的不同阶段采用固定的搜索步长容易陷入局部最优。为解决上述问题,提出了一种基于自适应知识迁移与动态资源分配的多任务协同优化(Multitask Cooperative Optimization Algorithm Based on Adaptive Knowledge Transfer and Resource Allocation,AMTO)算法。首先,每个任务用一个单独的种群进行优化,并将一个种群分成3个子种群,采用3种不同的搜索策略,增加搜索行为的多样性,并且在单个任务内根据个体成功率来动态更新搜索步长,增强自适应搜索能力,避免陷入局部最优;其次,利用多个任务间知识迁移的反馈结果在线计算任务间相似度,并依据相似度自适应地调整迁移概率,同时,在相似度较低的任务间进行迁移时还需减去任务偏差,减小负向知识迁移造成的性能下降程度,提升算法对任务间差异的感知能力;然后,通过评估任务性能的提升度来估计任务难度与优化状态,对不同难度与状态的任务动态按需分配资源,最大限度地提升资源的利用率,减少资源浪费;最后,在简单与复杂两类多任务优化函数上,将本文算法与经典的多任务算法进行对比实验,验证了本文算法中自适应迁移策略、动态资源分配策略及其综合的有效性。