为了解和掌握月相对渔业产量或单位捕捞努力量渔获量(catch per unit effort,CPUE)的影响规律,利用2016—2019年(每年3月2日—11月29日)马达加斯加西海岸底拖网独角新对虾(Metapenaeus monoceros)和2017—2020年(每年6月15日—10月9日)...为了解和掌握月相对渔业产量或单位捕捞努力量渔获量(catch per unit effort,CPUE)的影响规律,利用2016—2019年(每年3月2日—11月29日)马达加斯加西海岸底拖网独角新对虾(Metapenaeus monoceros)和2017—2020年(每年6月15日—10月9日)西白令海中层拖网狭鳕(Theragra chalcogramma)的渔业生产数据,结合基于圆形统计的广义线性模型(GLM)和基于时间序列的广义加性模型(GAM)2种不同的月相量化和统计的方法,分析月相对拖网渔业CPUE的影响。结果表明:月相对独角新对虾的CPUE具有显著性影响(P<0.05),2种方法得出的影响趋势较为一致,较高CPUE出现在上弦月;基于圆形统计的GLM显示,月相对狭鳕CPUE具有显著性影响(P<0.05),较高CPUE出现在新月期,而基于时间序列的GAM显示,月相对狭鳕CPUE的影响不显著(P>0.05);交叉验证显示,基于圆形统计的GLM平均绝对误差(E_(MA))和均方根误差(E_(RMS))均小于基于时间序列的GAM,而GLM分析的决定系数R~2则大于GAM,表明前者的拟合具有更好的准确性、稳定性和拟合优度。研究表明,当周期性循环变量(月份、月相和小时等)具有较弱的显著性时,使用基于圆形统计的GLM更能反映月相对拖网渔业CPUE的影响。展开更多
黄鳍金枪鱼(Thunnus albacares)为高度洄游的大洋性鱼类,有较高的生态和经济价值,中西太平洋(Western and Central Pacific Ocean,WCPO)是全球金枪鱼捕捞产量最高的海区。为了解和预测中西太平洋黄鳍金枪鱼不同渔业对气候变化的反应,根...黄鳍金枪鱼(Thunnus albacares)为高度洄游的大洋性鱼类,有较高的生态和经济价值,中西太平洋(Western and Central Pacific Ocean,WCPO)是全球金枪鱼捕捞产量最高的海区。为了解和预测中西太平洋黄鳍金枪鱼不同渔业对气候变化的反应,根据1990—2020年世界各国在中西太平洋的围网和延绳钓作业以及海洋尼诺指数(Oceanic Niño index,ONI)数据,分析了常规自回归积分滑动平均模型(Autoregressive Integrated Moving Average Model,ARIMA)和加入ONI标准差为协变量的动态ARIMA模型在渔业资源量研究中的适用性,以及ONI对中西太平洋黄鳍金枪鱼年际单位捕捞努力量渔获量(Catch per unit effort,CPUE)的影响。结果表明:1)常规ARIMA模型能够充分考虑中西太平洋黄鳍金枪鱼年CPUE的变化特征,可用于黄鳍金枪鱼年CPUE的长期拟合;2)相比常规ARIMA模型,动态ARIMA模型的拟合度更好,拟合值和真实值的相关性更高,同时平均绝对误差、均方根误差更小;3)ONI对中西太平洋赤道南北海域黄鳍金枪鱼的年CPUE影响不同,相对而言,在赤道以北,ONI的影响因素更关键,模型的拟合度更高;4)ONI对中西太平洋不同渔业的黄鳍金枪鱼的年CPUE影响有差别,对中西太平洋黄鳍金枪鱼延绳钓渔业存在滞后1~2年的影响,而在强厄尔尼诺和强拉尼娜现象时,对围网渔业的影响速度较快,不存在滞后。展开更多
文摘为了解和掌握月相对渔业产量或单位捕捞努力量渔获量(catch per unit effort,CPUE)的影响规律,利用2016—2019年(每年3月2日—11月29日)马达加斯加西海岸底拖网独角新对虾(Metapenaeus monoceros)和2017—2020年(每年6月15日—10月9日)西白令海中层拖网狭鳕(Theragra chalcogramma)的渔业生产数据,结合基于圆形统计的广义线性模型(GLM)和基于时间序列的广义加性模型(GAM)2种不同的月相量化和统计的方法,分析月相对拖网渔业CPUE的影响。结果表明:月相对独角新对虾的CPUE具有显著性影响(P<0.05),2种方法得出的影响趋势较为一致,较高CPUE出现在上弦月;基于圆形统计的GLM显示,月相对狭鳕CPUE具有显著性影响(P<0.05),较高CPUE出现在新月期,而基于时间序列的GAM显示,月相对狭鳕CPUE的影响不显著(P>0.05);交叉验证显示,基于圆形统计的GLM平均绝对误差(E_(MA))和均方根误差(E_(RMS))均小于基于时间序列的GAM,而GLM分析的决定系数R~2则大于GAM,表明前者的拟合具有更好的准确性、稳定性和拟合优度。研究表明,当周期性循环变量(月份、月相和小时等)具有较弱的显著性时,使用基于圆形统计的GLM更能反映月相对拖网渔业CPUE的影响。
文摘黄鳍金枪鱼(Thunnus albacares)为高度洄游的大洋性鱼类,有较高的生态和经济价值,中西太平洋(Western and Central Pacific Ocean,WCPO)是全球金枪鱼捕捞产量最高的海区。为了解和预测中西太平洋黄鳍金枪鱼不同渔业对气候变化的反应,根据1990—2020年世界各国在中西太平洋的围网和延绳钓作业以及海洋尼诺指数(Oceanic Niño index,ONI)数据,分析了常规自回归积分滑动平均模型(Autoregressive Integrated Moving Average Model,ARIMA)和加入ONI标准差为协变量的动态ARIMA模型在渔业资源量研究中的适用性,以及ONI对中西太平洋黄鳍金枪鱼年际单位捕捞努力量渔获量(Catch per unit effort,CPUE)的影响。结果表明:1)常规ARIMA模型能够充分考虑中西太平洋黄鳍金枪鱼年CPUE的变化特征,可用于黄鳍金枪鱼年CPUE的长期拟合;2)相比常规ARIMA模型,动态ARIMA模型的拟合度更好,拟合值和真实值的相关性更高,同时平均绝对误差、均方根误差更小;3)ONI对中西太平洋赤道南北海域黄鳍金枪鱼的年CPUE影响不同,相对而言,在赤道以北,ONI的影响因素更关键,模型的拟合度更高;4)ONI对中西太平洋不同渔业的黄鳍金枪鱼的年CPUE影响有差别,对中西太平洋黄鳍金枪鱼延绳钓渔业存在滞后1~2年的影响,而在强厄尔尼诺和强拉尼娜现象时,对围网渔业的影响速度较快,不存在滞后。