Metasurfaces in the long wave infrared(LWIR)spectrum hold great potential for applications in ther-mal imaging,atmospheric remote sensing,and target identification,among others.In this study,we designed and experiment...Metasurfaces in the long wave infrared(LWIR)spectrum hold great potential for applications in ther-mal imaging,atmospheric remote sensing,and target identification,among others.In this study,we designed and experimentally demonstrated a 4 mm size,all-silicon metasurface metalens with large depth of focus opera-tional across a broadband range from 9µm to 11.5µm.The experimental results confirm effective focusing and imaging capabilities of the metalens in LWIR region,thus paving the way for practical LWIR applications of met-alens technology.展开更多
An enhancement of mid-wavelength infrared absorbance is achieved via a cost-effectively chemical method to bend the flakes by grafting two types of alkane octane(C_(8)H_(18))and dodecane(C_(12)H_(26))onto the surface ...An enhancement of mid-wavelength infrared absorbance is achieved via a cost-effectively chemical method to bend the flakes by grafting two types of alkane octane(C_(8)H_(18))and dodecane(C_(12)H_(26))onto the surface terminals respectively.The chain-length of alkane exceeds the bond-length of surface functionalities T(x=O,-OH,-F)so as to introduce intra-flake and inter-flake strains into Ti_(3)C_(2)T_(x)MXene.The electronic microscopy(TEM/AFM)shows obvious edge-fold and tensile/compressive deformation of flake.The alkane termination increases the intrinsic absorbance of Ti_(3)C_(2)T_(x)MXene from no more than 50%up to more than 99%in the mid-wavelength in⁃frared region from 2.5μm to 4.5μm.Such an absorption enhancement attributes to the reduce of infrared reflec⁃tance of Ti_(3)C_(2)T_(x)MXene.The C-H bond skeleton vibration covers the aforementioned region and partially reduces the surface reflectance.Meanwhile,the flake deformation owing to edge-fold and tensile/compression increases the specific surface area so as to increase the absorption as well.These results have applicable value in the area of mid-infrared camouflage.展开更多
基金Supported by National Key R&D Program of China(2021YFA0715500)National Natural Science Foundation of China(NSFC)(12227901)+1 种基金Strategic Priority Research Program(B)of the Chinese Academy of Sciences(XDB0580000)Chinese Academy of Sciences President's In-ternational Fellowship Initiative(2021PT0007).
文摘Metasurfaces in the long wave infrared(LWIR)spectrum hold great potential for applications in ther-mal imaging,atmospheric remote sensing,and target identification,among others.In this study,we designed and experimentally demonstrated a 4 mm size,all-silicon metasurface metalens with large depth of focus opera-tional across a broadband range from 9µm to 11.5µm.The experimental results confirm effective focusing and imaging capabilities of the metalens in LWIR region,thus paving the way for practical LWIR applications of met-alens technology.
文摘An enhancement of mid-wavelength infrared absorbance is achieved via a cost-effectively chemical method to bend the flakes by grafting two types of alkane octane(C_(8)H_(18))and dodecane(C_(12)H_(26))onto the surface terminals respectively.The chain-length of alkane exceeds the bond-length of surface functionalities T(x=O,-OH,-F)so as to introduce intra-flake and inter-flake strains into Ti_(3)C_(2)T_(x)MXene.The electronic microscopy(TEM/AFM)shows obvious edge-fold and tensile/compressive deformation of flake.The alkane termination increases the intrinsic absorbance of Ti_(3)C_(2)T_(x)MXene from no more than 50%up to more than 99%in the mid-wavelength in⁃frared region from 2.5μm to 4.5μm.Such an absorption enhancement attributes to the reduce of infrared reflec⁃tance of Ti_(3)C_(2)T_(x)MXene.The C-H bond skeleton vibration covers the aforementioned region and partially reduces the surface reflectance.Meanwhile,the flake deformation owing to edge-fold and tensile/compression increases the specific surface area so as to increase the absorption as well.These results have applicable value in the area of mid-infrared camouflage.