期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度学习的人工智能模型自动识别颈动脉斑块 被引量:1
1
作者 赫兰 申锷 +5 位作者 杨泽堃 张颖 王玉东 陈伟导 王一同 贺永明 《中国医疗器械杂志》 2024年第4期361-366,共6页
该研究旨在构建一个用于颈动脉斑块超声图像的有无判定的数据集,由1 165例受检者的1 761张超声图像组成。研究采用了一种融合了双线性卷积神经网络与残差神经网络的深度学习架构,即单输入BCNN-ResNet模型,以辅助临床医生通过颈动脉超声... 该研究旨在构建一个用于颈动脉斑块超声图像的有无判定的数据集,由1 165例受检者的1 761张超声图像组成。研究采用了一种融合了双线性卷积神经网络与残差神经网络的深度学习架构,即单输入BCNN-ResNet模型,以辅助临床医生通过颈动脉超声图像进行斑块的诊断。该模型经过训练以及内部和外部验证后,在内部验证中,ROC AUC达到了0.99,其95%置信区间为(0.91, 0.84),在外部验证中ROC AUC为0.95,其95%置信区间为(0.96, 0.94),此表现优于ResNet-34网络模型在内部验证中0.98 AUC的95%置信区间(0.99,0.95)和外部验证中0.94 AUC的95%置信区间(0.95, 0.92)。因此,单输入BCNN-ResNet网络模型展示了优异的诊断性能,为颈动脉斑块的自动识别提供了一种创新的解决方案。 展开更多
关键词 单输入BCNN-ResNet网络模型 颈动脉超声 深度学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部