期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于腰椎螺旋CT图像以卷积神经网络技术全自动识别并重建椎间盘的可行性 被引量:5
1
作者 熊祚钢 吴敏 +3 位作者 叶喜林 臧天龙 吴海萍 徐辉雄 《中国介入影像与治疗学》 北大核心 2022年第2期99-103,共5页
目的观察基于腰椎螺旋CT图像以卷积神经网络技术全自动识别及重建椎间盘的可行性。方法回顾性分析400例腰痛患者的腰椎CT资料,以其中320例为训练集、40例为验证集、40例为测试集。以人工智能(AI)系统进行学习训练和测试。以深度学习(DL... 目的观察基于腰椎螺旋CT图像以卷积神经网络技术全自动识别及重建椎间盘的可行性。方法回顾性分析400例腰痛患者的腰椎CT资料,以其中320例为训练集、40例为验证集、40例为测试集。以人工智能(AI)系统进行学习训练和测试。以深度学习(DL)卷积神经网络3D V-Net技术分割腰椎轴位CT图像中的椎体与椎间盘,并轴位重建椎间盘;以Dice系数评估分割精度。由2名放射科医师分别对AI重建图像及人工重建图像进行图像质量评分并进行对比。结果AI分割骶椎椎体、L5椎体、L1~L4椎体及椎间盘的Dice系数分别为0.953、0.940、0.940及0.926,平均为0.940。针对测试集40例,采用腰椎螺旋CT数据经卷积神经网络技术完成197个椎间盘重建。2名放射科医师对197幅AI重建图像及人工重建图像的中位评分均为4分,差异无统计学意义(P均>0.05);评分一致性加权Kappa值为0.862[95%CI(0.778,0.946),P<0.001]。结论基于腰椎螺旋CT图像卷积神经网络全自动识别及重建椎间盘的可行性令人满意。 展开更多
关键词 腰椎 椎间盘 体层摄影术 X线计算机 神经网络(计算机)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部