期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
废风电叶片回收增强纤维的工艺与参数优化
1
作者 王程浩 朱峰 +1 位作者 陈德珍 洪鎏 《新能源进展》 北大核心 2025年第1期97-106,共10页
风能在可再生能源体系中扮演着重要的角色,但随着废风电叶片数量逐年增加,废风电叶片的回收利用刻不容缓。利用热解法回收风电叶片中的增强纤维具有减容减量快、资源化程度高的优点,已有的研究主要针对碳纤维为增强纤维的情况,回收玻璃... 风能在可再生能源体系中扮演着重要的角色,但随着废风电叶片数量逐年增加,废风电叶片的回收利用刻不容缓。利用热解法回收风电叶片中的增强纤维具有减容减量快、资源化程度高的优点,已有的研究主要针对碳纤维为增强纤维的情况,回收玻璃纤维的研究很少。玻璃纤维的强度受处理温度的影响较大,为提高玻璃纤维强度、降低能耗,采用热解-氧化脱碳工艺回收增强玻璃纤维,针对脱碳过程中的三个关键工艺参数即脱碳温度、保温时间、升温速率进行优化,基于响应曲面法设计实验,以回收的玻璃纤维的力学强度(最大荷重)为响应值,探究三个工艺参数对最大荷重的交互影响,实现回收的纤维具有最高强度。结果表明:脱碳温度对最大荷重的影响最为显著,保温时间和升温速率对最大荷重也有一定的影响。优化后的最佳工艺参数为脱碳温度452.45℃、保温时间43.20 min、升温速率11.12℃/min。实验也证实了优化后回收的纤维强度是最高的,可达到原始强度的51.2%,且优化的工艺参数对应的过程更节能。 展开更多
关键词 废风电叶片 热解 增强纤维回收 氧化脱碳 响应曲面法 最大荷重
在线阅读 下载PDF
用于超级电容器的生物炭电极材料性能研究进展
2
作者 梁雨晖 陈德珍 《新能源进展》 北大核心 2025年第1期51-68,共18页
在众多储能元件中,超级电容器因具有功率密度高、倍率性能优异、循环稳定性好的优点而受到广泛关注。以低成本、绿色清洁、含碳量高的生物炭作为电极材料是目前的主要研究方向。回顾了生物炭制备方法包括热解、水热和气化对生物炭作为... 在众多储能元件中,超级电容器因具有功率密度高、倍率性能优异、循环稳定性好的优点而受到广泛关注。以低成本、绿色清洁、含碳量高的生物炭作为电极材料是目前的主要研究方向。回顾了生物炭制备方法包括热解、水热和气化对生物炭作为电极原材料的适应性;分析了生物炭比表面积、孔隙结构、官能团、电导率等性质对超级电容器性能的影响;讨论了生物炭物理活化、化学活化、原子掺杂、导电聚合物与生物炭复合、金属氧化物与生物炭复合等活化改性方法对超级电容器性能的提升;比较了常见生物质类型如木质、海洋生物质、草本和水果等生物质在超级电容器中的应用性能。结果表明:以高比表面积和构建合适的介孔微孔比为生物炭改性目标,并通过掺入杂原子或导电聚合物来增加比电容是合适路径。在众多生物质中,木质生物质因孔隙发达、灰分低、纤维素含量高等优势而成为主要研究对象,可制备多级多孔结构和超高含碳量的生物炭,有望用于生产高性能超级电容器电极材料。目前,进一步明确生物炭特性和超级电容性能之间的构效关系仍是研究重点。 展开更多
关键词 超级电容器 生物炭 电极材料 改性 比电容
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部