期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于流形学习的聚类方法在基因芯片表达谱分析中的应用 被引量:5
1
作者 黄伟 刘战民 +1 位作者 薛丹 尹京苑 《中国生物医学工程学报》 CAS CSCD 北大核心 2010年第1期77-85,共9页
对基因芯片表达谱的聚类分析有助于发现共表达的基因,而共表达的特性往往是共调控基因所拥有的性质。因此,对基因表达谱的准确聚类将有利于更加准确地发现基因之间的调控关系。本研究使用机器学习中的等度规映射、局部线性嵌入、拉普拉... 对基因芯片表达谱的聚类分析有助于发现共表达的基因,而共表达的特性往往是共调控基因所拥有的性质。因此,对基因表达谱的准确聚类将有利于更加准确地发现基因之间的调控关系。本研究使用机器学习中的等度规映射、局部线性嵌入、拉普拉斯特征根映射等流形学习方法处理基因表达谱数据,得到非线性降维后的数据。在此基础上应用K均值聚类、模糊聚类、自组织映射神经网络等聚类方法,根据给定的阈值,从酵母基因表达数据的382个聚类结果中得到了117个共表达基因对,而从人类血清组织细胞的基因表达数据的132个聚类结果中得到了89个共表达基因对。使用的判别准则表明,基于流形学习的聚类方法与以往的方法相当,且能够被用以发现高维基因芯片表达数据中的低维的流形结构。 展开更多
关键词 非线性降维 流形学习 聚类分析 基因芯片
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部