期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于流形学习的聚类方法在基因芯片表达谱分析中的应用
被引量:
5
1
作者
黄伟
刘战民
+1 位作者
薛丹
尹京苑
《中国生物医学工程学报》
CAS
CSCD
北大核心
2010年第1期77-85,共9页
对基因芯片表达谱的聚类分析有助于发现共表达的基因,而共表达的特性往往是共调控基因所拥有的性质。因此,对基因表达谱的准确聚类将有利于更加准确地发现基因之间的调控关系。本研究使用机器学习中的等度规映射、局部线性嵌入、拉普拉...
对基因芯片表达谱的聚类分析有助于发现共表达的基因,而共表达的特性往往是共调控基因所拥有的性质。因此,对基因表达谱的准确聚类将有利于更加准确地发现基因之间的调控关系。本研究使用机器学习中的等度规映射、局部线性嵌入、拉普拉斯特征根映射等流形学习方法处理基因表达谱数据,得到非线性降维后的数据。在此基础上应用K均值聚类、模糊聚类、自组织映射神经网络等聚类方法,根据给定的阈值,从酵母基因表达数据的382个聚类结果中得到了117个共表达基因对,而从人类血清组织细胞的基因表达数据的132个聚类结果中得到了89个共表达基因对。使用的判别准则表明,基于流形学习的聚类方法与以往的方法相当,且能够被用以发现高维基因芯片表达数据中的低维的流形结构。
展开更多
关键词
非线性降维
流形学习
聚类分析
基因芯片
在线阅读
下载PDF
职称材料
题名
基于流形学习的聚类方法在基因芯片表达谱分析中的应用
被引量:
5
1
作者
黄伟
刘战民
薛丹
尹京苑
机构
上海大学生命科学学院生物信息学中心
出处
《中国生物医学工程学报》
CAS
CSCD
北大核心
2010年第1期77-85,共9页
文摘
对基因芯片表达谱的聚类分析有助于发现共表达的基因,而共表达的特性往往是共调控基因所拥有的性质。因此,对基因表达谱的准确聚类将有利于更加准确地发现基因之间的调控关系。本研究使用机器学习中的等度规映射、局部线性嵌入、拉普拉斯特征根映射等流形学习方法处理基因表达谱数据,得到非线性降维后的数据。在此基础上应用K均值聚类、模糊聚类、自组织映射神经网络等聚类方法,根据给定的阈值,从酵母基因表达数据的382个聚类结果中得到了117个共表达基因对,而从人类血清组织细胞的基因表达数据的132个聚类结果中得到了89个共表达基因对。使用的判别准则表明,基于流形学习的聚类方法与以往的方法相当,且能够被用以发现高维基因芯片表达数据中的低维的流形结构。
关键词
非线性降维
流形学习
聚类分析
基因芯片
Keywords
non-linear dimensional reduction
manifold learning
clustering analysis
microarray
分类号
O212.2 [理学—概率论与数理统计]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于流形学习的聚类方法在基因芯片表达谱分析中的应用
黄伟
刘战民
薛丹
尹京苑
《中国生物医学工程学报》
CAS
CSCD
北大核心
2010
5
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部