The hypotheses of the Krmn_Donnell theory of thin shells with large deflections and the Boltzmann laws for isotropic linear, viscoelastic materials, the constitutive equations of shallow shells are first derived. ...The hypotheses of the Krmn_Donnell theory of thin shells with large deflections and the Boltzmann laws for isotropic linear, viscoelastic materials, the constitutive equations of shallow shells are first derived. Then the governing equations for the deflection and stress function are formulated by using the procedure similar to establishing the Krmn equations of elastic thin plates. Introducing proper assumptions, an approximate theory for viscoelastic cylindrical shells under axial pressures can be obtained. Finally, the dynamical behavior is studied in detail by using several numerical methods. Dynamical properties, such as, hyperchaos, chaos, strange attractor, limit cycle etc., are discovered.展开更多
已有实验表明,处于细胞质中的微管可以比自由微管承受更大的压力而不发生屈曲.基于嵌入式碳纳米管屈曲的Winkler模型,利用正交各向异性情形的Winkler模型研究了细胞质中充当细胞骨架的微管的屈曲行为.计算表明,本模型可以较好地预测嵌...已有实验表明,处于细胞质中的微管可以比自由微管承受更大的压力而不发生屈曲.基于嵌入式碳纳米管屈曲的Winkler模型,利用正交各向异性情形的Winkler模型研究了细胞质中充当细胞骨架的微管的屈曲行为.计算表明,本模型可以较好地预测嵌入弹性介质中的微管较自由微管承受更大屈曲压力这一现象,而且所得到的临界屈曲压力与微管受压屈曲的实验值吻合[Needleman D J,Ojeda-Lopez M A,Kai Ewert U R,Miller H P,Wilson L,Safiny C R.Biophys J,2005,89(5):3410-3423;Needleman D J,Ojeda-Lopez M A,Raviv U,Ewert K,Jones J B,Miller HP L,Wilso L,Safinya C R.Phys Rev Lett,2004,93(19):1981041-1981044.].同时,所得的结果也表明周围介质与微管的相互作用可以极大地提高微管抵抗屈曲的能力,该结果很好地阐释了介质与微管相互作用从而提高微管抗屈曲压力的相互作用机制[Brangwynne C P,MacKintosh F C,Ku-mar S,Geisse N A,Talbot J,Mahadevan L,Parker K K,Ingber D E,Weitz D A.The Journal of CellBiology,2006,173(5):733-741].模拟结果表明,所给出的模型可以对嵌入弹性介质中的微管的屈曲行为进行很好地模拟.展开更多
文摘The hypotheses of the Krmn_Donnell theory of thin shells with large deflections and the Boltzmann laws for isotropic linear, viscoelastic materials, the constitutive equations of shallow shells are first derived. Then the governing equations for the deflection and stress function are formulated by using the procedure similar to establishing the Krmn equations of elastic thin plates. Introducing proper assumptions, an approximate theory for viscoelastic cylindrical shells under axial pressures can be obtained. Finally, the dynamical behavior is studied in detail by using several numerical methods. Dynamical properties, such as, hyperchaos, chaos, strange attractor, limit cycle etc., are discovered.
文摘已有实验表明,处于细胞质中的微管可以比自由微管承受更大的压力而不发生屈曲.基于嵌入式碳纳米管屈曲的Winkler模型,利用正交各向异性情形的Winkler模型研究了细胞质中充当细胞骨架的微管的屈曲行为.计算表明,本模型可以较好地预测嵌入弹性介质中的微管较自由微管承受更大屈曲压力这一现象,而且所得到的临界屈曲压力与微管受压屈曲的实验值吻合[Needleman D J,Ojeda-Lopez M A,Kai Ewert U R,Miller H P,Wilson L,Safiny C R.Biophys J,2005,89(5):3410-3423;Needleman D J,Ojeda-Lopez M A,Raviv U,Ewert K,Jones J B,Miller HP L,Wilso L,Safinya C R.Phys Rev Lett,2004,93(19):1981041-1981044.].同时,所得的结果也表明周围介质与微管的相互作用可以极大地提高微管抵抗屈曲的能力,该结果很好地阐释了介质与微管相互作用从而提高微管抗屈曲压力的相互作用机制[Brangwynne C P,MacKintosh F C,Ku-mar S,Geisse N A,Talbot J,Mahadevan L,Parker K K,Ingber D E,Weitz D A.The Journal of CellBiology,2006,173(5):733-741].模拟结果表明,所给出的模型可以对嵌入弹性介质中的微管的屈曲行为进行很好地模拟.