针对快速搜索随机树(rapidly-exploring random tree,RRT)算法在避障路径规划中存在的对地图适应性弱、采样质量差、无效节点多、规划时间长及路径质量差等问题,提出了一种改进RRT算法。首先,在传统RRT算法的基础上,基于地图复杂程度评...针对快速搜索随机树(rapidly-exploring random tree,RRT)算法在避障路径规划中存在的对地图适应性弱、采样质量差、无效节点多、规划时间长及路径质量差等问题,提出了一种改进RRT算法。首先,在传统RRT算法的基础上,基于地图复杂程度评估策略计算得到合适的步长及偏置概率,以实现对不同地图的自适应。然后,通过采样区域动态更新策略,使随机树在有效区域内进行采样,以确保随机树的正向生长;在确定采样区域后,利用采样点优化策略来提高采样点的有效性,使得随机树朝目标点附近生长。最后,采用节点重连策略对规划的初始避障路径进行优化,以获得一条弯折次数较少的避障路径。在Python及MATLAB环境中对改进RRT算法的可行性进行验证。结果表明,在面向复杂程度不同的地图和应用于机械臂时,改进RRT算法均能快速规划出一条无碰撞的高质量路径。研究结果可为提高机器人避障路径的规划效率提供参考。展开更多
针对传统目测法检测贴片二极管表面缺陷效率低下和基于手工特征的目标检测算法模型较浅,以及语义性不高等问题,提出了改进YOLO-V4的贴片二极管表面缺陷检测方法。首先考虑到随着网络加深使梯度消失,以及减少网络中的特征冗余和参数量的...针对传统目测法检测贴片二极管表面缺陷效率低下和基于手工特征的目标检测算法模型较浅,以及语义性不高等问题,提出了改进YOLO-V4的贴片二极管表面缺陷检测方法。首先考虑到随着网络加深使梯度消失,以及减少网络中的特征冗余和参数量的情况,CSP1模块采用DenseNet替换原网络中的ResNet;其次,为了实现特征信息的跨维度交互,让网络更加关注重要信息,在CSP1模块后引入了三分支注意力机制模块,同时使用FPN+PANet对特征进行融合;并且用CSP2替换CBL×5模块,降低了网络的运算量,提高了算法检测速度;最后优化了Focal Loss函数,对正负样本添加权重,以解决正负样本不平衡的问题。本文算法相较于YOLO-V4的检测精度(precision,P)、召回率(recall,R)和多分类平均精度(mean average precision,mAP),分别高出2.98%,2.65%,2.92%,表明改进YOLO-V4可以有效检测贴片二极管表面缺陷问题。展开更多
文摘针对快速搜索随机树(rapidly-exploring random tree,RRT)算法在避障路径规划中存在的对地图适应性弱、采样质量差、无效节点多、规划时间长及路径质量差等问题,提出了一种改进RRT算法。首先,在传统RRT算法的基础上,基于地图复杂程度评估策略计算得到合适的步长及偏置概率,以实现对不同地图的自适应。然后,通过采样区域动态更新策略,使随机树在有效区域内进行采样,以确保随机树的正向生长;在确定采样区域后,利用采样点优化策略来提高采样点的有效性,使得随机树朝目标点附近生长。最后,采用节点重连策略对规划的初始避障路径进行优化,以获得一条弯折次数较少的避障路径。在Python及MATLAB环境中对改进RRT算法的可行性进行验证。结果表明,在面向复杂程度不同的地图和应用于机械臂时,改进RRT算法均能快速规划出一条无碰撞的高质量路径。研究结果可为提高机器人避障路径的规划效率提供参考。
文摘针对传统目测法检测贴片二极管表面缺陷效率低下和基于手工特征的目标检测算法模型较浅,以及语义性不高等问题,提出了改进YOLO-V4的贴片二极管表面缺陷检测方法。首先考虑到随着网络加深使梯度消失,以及减少网络中的特征冗余和参数量的情况,CSP1模块采用DenseNet替换原网络中的ResNet;其次,为了实现特征信息的跨维度交互,让网络更加关注重要信息,在CSP1模块后引入了三分支注意力机制模块,同时使用FPN+PANet对特征进行融合;并且用CSP2替换CBL×5模块,降低了网络的运算量,提高了算法检测速度;最后优化了Focal Loss函数,对正负样本添加权重,以解决正负样本不平衡的问题。本文算法相较于YOLO-V4的检测精度(precision,P)、召回率(recall,R)和多分类平均精度(mean average precision,mAP),分别高出2.98%,2.65%,2.92%,表明改进YOLO-V4可以有效检测贴片二极管表面缺陷问题。