期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于模型知识融合的图神经网络多雷达协同任务调度算法 被引量:1
1
作者 李浩情 余点 +2 位作者 潘常春 郁文贤 李东瀛 《雷达学报(中英文)》 北大核心 2025年第2期470-485,共16页
现代雷达的探测、跟踪、识别等任务场景越来越复杂。任务类型的多变性,雷达资源的稀缺性和任务执行时间窗口的严格要求,使得雷达任务调度成为一类强NP-Hard问题。然而,现有的调度算法在处理涉及复杂逻辑约束的多雷达协同调度问题时适应... 现代雷达的探测、跟踪、识别等任务场景越来越复杂。任务类型的多变性,雷达资源的稀缺性和任务执行时间窗口的严格要求,使得雷达任务调度成为一类强NP-Hard问题。然而,现有的调度算法在处理涉及复杂逻辑约束的多雷达协同调度问题时适应性不足,效率不高。因此,基于人工智能(AI)的调度算法正在成为研究热点,但是AI调度算法的效率与其对问题特征的提取是否全面密切相关。如何能快速、全面地提取多雷达协同任务调度问题的共性特征,是提升这类AI调度算法效率的关键。因此,该文提出了基于模型知识融合的图神经网络(MKEGNN)调度算法。该算法首先将雷达任务协同调度问题建模为异构网络图模型,利用模型知识来优化GNN算法训练过程。算法创新在于:通过低复杂度的计算手段,获取模型的关键知识,进而优化GNN模型。在特征提取阶段,引入随机酉矩阵变换,利用任务异构图的随机拉普拉斯矩阵谱特征作为全局特征来强化图神经网络对共性特征的提取能力,弱化特定问题的个性化特征;在参数化决策阶段,利用由问题的引导解和经验解构成的上/下界结构知识从原理上减少决策空间大小,引导网络快速优化,加速决策学习过程的收敛。最后,进行了大量数据仿真实验。结果表明,相比目前的算法,MKEGNN算法对于所有任务集在稳定性和精度方面都有所提升,调度成功率性能提升3%~10%,加权调度成功率提升5%~15%。尤其当处理多雷达协同关系复杂的任务集时,任务调度成功率提升4%以上,算法稳定性和鲁棒性显著增强。 展开更多
关键词 雷达任务调度 图神经网络 强化学习 模型知识 拉普拉斯矩阵 随机矩阵
在线阅读 下载PDF
基于改进YOLOv5的半监督车辆检测算法 被引量:1
2
作者 高睿 安国成 +1 位作者 邹丹平 裴凌 《计算机工程》 北大核心 2025年第3期300-309,共10页
目前,交通场景中的车辆检测存在目标尺度差异显著以及遮挡重叠严重等问题,且对大规模数据进行完全标注需要较高的成本。针对以上情况,提出一种基于改进YOLOv5的半监督车辆检测算法。引入SimOTA样本匹配方法,优化次优匹配现象,改善目标... 目前,交通场景中的车辆检测存在目标尺度差异显著以及遮挡重叠严重等问题,且对大规模数据进行完全标注需要较高的成本。针对以上情况,提出一种基于改进YOLOv5的半监督车辆检测算法。引入SimOTA样本匹配方法,优化次优匹配现象,改善目标尺度形状变化导致的检测困难;提出一种新的空间金字塔池化网络SPPFA,通过引入LSKA,在增大感受野的同时实现空间和通道的自适应性,缓解大尺度目标和遮挡问题产生的影响;将CIoU替换为SIoU,优化回归损失函数。在此基础上,提出一种改进的半监督深度学习算法,通过优化损失函数设计,增强算法学习未标注样本中有益信息的能力,有效提高模型对车辆的检测精度。实验结果表明,改进后的算法在自制车辆数据集上mAP@0.5指标达到了58.2%,相较YOLOv5n基线模型提升了11.1百分点,且模型体积远小于主流目标检测算法,具有良好的工程应用前景。 展开更多
关键词 YOLOv5 车辆检测 样本匹配 空间金字塔池化 半监督学习
在线阅读 下载PDF
基于迁移学习与改进YOLOv8s的输电线路故障识别方法
3
作者 黄柏澄 王晓龙 +1 位作者 安国成 张涛 《计算机科学》 北大核心 2025年第S1期369-376,共8页
目前,输电线路部分故障类别识别存在样本严重不足、无人机拍摄远距离小目标定位困难等问题,导致输电线路故障识别精度较低。为此,提出一种基于迁移学习与改进YOLOv8s的输电线路故障识别方法。首先,为改善小样本情况下的故障识别效果,该... 目前,输电线路部分故障类别识别存在样本严重不足、无人机拍摄远距离小目标定位困难等问题,导致输电线路故障识别精度较低。为此,提出一种基于迁移学习与改进YOLOv8s的输电线路故障识别方法。首先,为改善小样本情况下的故障识别效果,该算法以YOLOv8s作为基线模型,使用迁移学习方法对模型进行预训练,并提出一种基于双向相关性的迁移学习样本选择模块,筛选出与目标域具有强相关性的样本类别,避免使用迁移学习时可能产生的负迁移问题,更好地辅助故障识别任务。其次,针对小目标定位困难问题,通过设计小目标注意检测层,将80*80输出特征图与浅层特征图进行特征融合后,引入EMA多尺度注意力机制,增强小目标特征信息;在预测框回归损失中使用NWD损失替换CIoU损失,采取Wasserstein距离度量小目标预测框与真值框的相似性,解决了IoU对小目标位置偏差敏感的问题,有效提升了小目标检测精度。实验结果表明:在小样本与小目标情况下,所提方法在输电线路故障数据集中mAP为51.1%,相较于YOLOv8s基线模型提升了8.2%,有效提升了故障识别精度,为小样本与小目标输电线路故障识别提供了新的解决思路与办法。 展开更多
关键词 故障识别 YOLOv8s 迁移学习 样本选择 注意力机制 损失函数
在线阅读 下载PDF
基于卷积神经网络的5G蜂窝网络无线定位方法 被引量:4
4
作者 熊星月 何迪 +1 位作者 何至军 周志成 《数据采集与处理》 CSCD 北大核心 2022年第6期1228-1245,共18页
5G蜂窝网络发展迅猛,其覆盖面积将逐渐增大,因此使用5G蜂窝网络进行定位是有研究潜力的研究方向。本文提出一种新的深度学习技术来实现高效、高精度和低占用的定位,以代替传统指纹定位过程中繁重的指纹库生成以及距离计算。该方法建立... 5G蜂窝网络发展迅猛,其覆盖面积将逐渐增大,因此使用5G蜂窝网络进行定位是有研究潜力的研究方向。本文提出一种新的深度学习技术来实现高效、高精度和低占用的定位,以代替传统指纹定位过程中繁重的指纹库生成以及距离计算。该方法建立了一个特殊的卷积神经网络,并根据5G天线信号的接收信号强度指示、相位和到达角等特征量,选择合适的输入数据格式构造样本组建训练集,对该卷积神经网络进行训练。训练得到的卷积神经网络可以替代指纹定位中的庞大指纹库,非常有利于直接在5G移动设备端实现定位。虽然卷积神经网络在训练过程中需要大量时间,但在训练完毕后直接进行分类定位的速度非常快,可以保障定位实现的实时性。本文所实现的卷积神经网络权重与偏置所占内存不到0.5 MB,且能够在实际应用环境中以95%的定位准确率以及0.1 m的平均定位精度实现高精度定位。 展开更多
关键词 深度学习 卷积神经网络 接收信号强度指示 相位 到达角
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部