利用低活性载体精确调控活性金属的电子结构是开发高性能电催化剂的有效途径,金属与载体之间高度灵活的电子相互作用可优化催化性能。在此,将Ir纳米团簇(Ir@NC)均匀地负载在氮掺杂炭框架上,制备了一种高效的析氢反应(HER)电催化剂。合...利用低活性载体精确调控活性金属的电子结构是开发高性能电催化剂的有效途径,金属与载体之间高度灵活的电子相互作用可优化催化性能。在此,将Ir纳米团簇(Ir@NC)均匀地负载在氮掺杂炭框架上,制备了一种高效的析氢反应(HER)电催化剂。合成过程是将在900℃下退火制备的沸石咪唑盐框架-8(ZIF-8)作为碳源浸入IrCl_(3)溶液中,然后在400℃的H_(2)/Ar气氛下进行煅烧还原处理。氮掺杂炭框架的三维多孔结构暴露了更多的活性金属位点,Ir簇和氮掺杂炭载体之间的协同效应有效地调节了Ir的电子结构,优化了HER过程。在酸性介质中,Ir@NC表现出显著的HER电催化活性:在10 mA cm^(-2)的条件下,过电位仅为23 mV,具有超低的Tafel斜率(25.8 mV dec^(-1)),且在10 mA cm^(-2)的条件下可稳定运行24 h以上。制备的电催化剂具有高活性、合成路线简便、可规模化制备等优点,有望成为一种极有前途的候选催化剂用于酸性水裂解进行工业制氢。展开更多
H2O2氧化环己烯制备环氧环己烷时有环己酮、环己醇等很多副产物产生。为了获得较纯的环氧环己烷需采用精馏进行分离,精馏提纯需要相关体系的汽液平衡数据,因此采用改进的EC-2汽液平衡釜测定常压(101.33 k Pa)下环己酮-环己醇二元体系和...H2O2氧化环己烯制备环氧环己烷时有环己酮、环己醇等很多副产物产生。为了获得较纯的环氧环己烷需采用精馏进行分离,精馏提纯需要相关体系的汽液平衡数据,因此采用改进的EC-2汽液平衡釜测定常压(101.33 k Pa)下环己酮-环己醇二元体系和环氧环己烷-环己酮-环己醇三元体系汽液平衡数据。利用二元系汽液平衡数据拟合得到的Wilson方程配偶参数预测该三元体系的汽液平衡数据,并以汽相组成的误差平方和作为目标函数,用Wilson方程关联实验数据,结果表明预测值及关联值与实验值偏差较小,可满足工程上分离设计的需要。展开更多
文摘利用低活性载体精确调控活性金属的电子结构是开发高性能电催化剂的有效途径,金属与载体之间高度灵活的电子相互作用可优化催化性能。在此,将Ir纳米团簇(Ir@NC)均匀地负载在氮掺杂炭框架上,制备了一种高效的析氢反应(HER)电催化剂。合成过程是将在900℃下退火制备的沸石咪唑盐框架-8(ZIF-8)作为碳源浸入IrCl_(3)溶液中,然后在400℃的H_(2)/Ar气氛下进行煅烧还原处理。氮掺杂炭框架的三维多孔结构暴露了更多的活性金属位点,Ir簇和氮掺杂炭载体之间的协同效应有效地调节了Ir的电子结构,优化了HER过程。在酸性介质中,Ir@NC表现出显著的HER电催化活性:在10 mA cm^(-2)的条件下,过电位仅为23 mV,具有超低的Tafel斜率(25.8 mV dec^(-1)),且在10 mA cm^(-2)的条件下可稳定运行24 h以上。制备的电催化剂具有高活性、合成路线简便、可规模化制备等优点,有望成为一种极有前途的候选催化剂用于酸性水裂解进行工业制氢。
文摘H2O2氧化环己烯制备环氧环己烷时有环己酮、环己醇等很多副产物产生。为了获得较纯的环氧环己烷需采用精馏进行分离,精馏提纯需要相关体系的汽液平衡数据,因此采用改进的EC-2汽液平衡釜测定常压(101.33 k Pa)下环己酮-环己醇二元体系和环氧环己烷-环己酮-环己醇三元体系汽液平衡数据。利用二元系汽液平衡数据拟合得到的Wilson方程配偶参数预测该三元体系的汽液平衡数据,并以汽相组成的误差平方和作为目标函数,用Wilson方程关联实验数据,结果表明预测值及关联值与实验值偏差较小,可满足工程上分离设计的需要。