期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
Computational Analysis on the Hydrodynamics of a Semisubmersible Naval Ship
1
作者 Utku Cem Karabulut Baris Barlas 《哈尔滨工程大学学报(英文版)》 2025年第2期331-344,共14页
Semisubmersible naval ships are versatile military crafts that combine the advantageous features of high-speed planing crafts and submarines.At-surface,these ships are designed to provide sufficient speed and maneuver... Semisubmersible naval ships are versatile military crafts that combine the advantageous features of high-speed planing crafts and submarines.At-surface,these ships are designed to provide sufficient speed and maneuverability.Additionally,they can perform shallow dives,offering low visual and acoustic detectability.Therefore,the hydrodynamic design of a semisubmersible naval ship should address at-surface and submerged conditions.In this study,Numerical analyses were performed using a semisubmersible hull form to analyze its hydrodynamic features,including resistance,powering,and maneuvering.The simulations were conducted with Star CCM+version 2302,a commercial package program that solves URANS equations using the SST k-ωturbulence model.The flow analysis was divided into two parts:at-surface simulations and shallowly submerged simulations.At-surface simulations cover the resistance,powering,trim,and sinkage at transition and planing regimes,with corresponding Froude numbers ranging from 0.42 to 1.69.Shallowly submerged simulations were performed at seven different submergence depths,ranging from D/LOA=0.0635 to D/LOA=0.635,and at two different speeds with Froude numbers of 0.21 and 0.33.The behaviors of the hydrodynamic forces and pitching moment for different operation depths were comprehensively analyzed.The results of the numerical analyses provide valuable insights into the hydrodynamic performance of semisubmersible naval ships,highlighting the critical factors influencing their resistance,powering,and maneuvering capabilities in both at-surface and submerged conditions. 展开更多
关键词 Semisubmersible naval ship Ship resistance Planing hull Computational fluid dynamics URANS equations Free surface effect High-resolution-interface-capturing scheme Numerical ventilation problem
在线阅读 下载PDF
Hydrodynamic and Hydroacoustic Computational Prediction of Conventional and Highly Skewed Marine Propellers Operating in Non-uniform Ship Wake 被引量:1
2
作者 S.E.Belhenniche O.Imine O.K.Kinaci 《Journal of Marine Science and Application》 CSCD 2020年第1期28-40,共13页
Despite their high manufacturing cost and structural deficiencies especially in tip regions,highly skewed propellers are preferred in the marine industry,where underwater noise is a significant design criterion.Howeve... Despite their high manufacturing cost and structural deficiencies especially in tip regions,highly skewed propellers are preferred in the marine industry,where underwater noise is a significant design criterion.However,hydrodynamic performances should also be considered before a decision to use these propellers is made.This study investigates the trade-off between hydrodynamic and hydroacoustic performances by comparing conventional and highly skewed Seiun Maru marine propellers for a noncavitating case.Many papers in the literature focus solely on hydroacoustic calculations for the open-water case.However,propulsive characteristics are significantly different when propeller-hull interactions take place.Changes in propulsion performance also reflect on the hydroacoustic performances of the propeller.In this study,propeller-hull interactions were considered to calculate the noise spectra.Rather than solving the full case,which is computationally demanding,an indirect approach was adopted;axial velocities from the nominal ship wake were introduced as the inlet condition of the numerical approach.A hybrid method based on the acoustic analogy was used in coupling computational fluid dynamics techniques with acoustic propagation methods,implementing the Ffowcs Williams-Hawkings(FW-H)equation.The hydrodynamic performances of both propellers were presented as a preliminary study.Propeller-hull interactions were included in calculations after observing good accordance between our results,experiments,and quasi-continuous method for the open-water case.With the use of the time-dependent flow field data of the propeller behind a nonuniform ship wake as an input,simulation results were used to solve the FW-H equation to extract acoustic pressure and sound pressure levels for several hydrophones located in the near field.Noise spectra results confirm that the highest values of the sound pressure levels are in the low-frequency range and the first harmonics calculated by the present method are in good accordance with the theoretical values.Results also show that a highly skewed propeller generates less noise even in noncavitating cases despite a small reduction in hydrodynamic efficiency. 展开更多
关键词 Seiun Maru Moving reference frame Underwater acoustics Underwater noise Sound pressure level Blade passing frequency FW-H equation HYDROPHONES
在线阅读 下载PDF
The Calculations of Propeller Induced Velocity by RANS and Momentum Theory 被引量:5
3
作者 Qiuxin Gao Wei Jin Dracos Vassalos 《Journal of Marine Science and Application》 2012年第2期164-168,共5页
In order to provide instructions for the calculation of the propeller induced velocity in the study of the hull-propeller interaction using the body force approach,three methods were used to calculate the propeller in... In order to provide instructions for the calculation of the propeller induced velocity in the study of the hull-propeller interaction using the body force approach,three methods were used to calculate the propeller induced velocity:1) Reynolds-Averaged Navier-Stokes(RANS) simulation of the self-propulsion test,2) RANS simulation of the propeller open water test,and 3) momentum theory of the propeller.The results from the first two methods were validated against experimental data to assess the accuracy of the computed flow field.The thrust identity method was adopted to obtain the advance velocity,which was then used to derive the propeller induced velocity from the total velocity field.The results computed by the first two approaches were close,while those from the momentum theory were significantly overestimated.The presented results could prove to be useful for further calculations of self-propulsion using the body force approach. 展开更多
关键词 propeller induced velocity RANS momentum theory SELF-PROPULSION
在线阅读 下载PDF
The Use of Hydrogen as a Fuel for Inland Waterway Units 被引量:3
4
作者 M. Morsy El Gohary Yousri M. A. Welaya AmrAbdelwahabSaad 《Journal of Marine Science and Application》 2014年第2期212-217,共6页
Escalating apprehension about the harmful effects of widespread use of conventional fossil fuels in the marine field and in internal combustion engines in general, has led to a vast amount of efforts and the directing... Escalating apprehension about the harmful effects of widespread use of conventional fossil fuels in the marine field and in internal combustion engines in general, has led to a vast amount of efforts and the directing of large capital investment towards research and development of sustainable alternative energy sources. One of the most promising and abundant of these sources is hydrogen. Firstly, the use of current fossil fuels is. discussed focusing on the emissions and economic sides to emphasize the need for a new, cleaner and renewable fuel with particular reference to hydrogen as a suitable possible alternative. Hydrogen properties, production and storage methods are then reviewed along with its suitability from the economical point of view. Finally, a cost analysis for the use of hydrogen in internal combustion engines is carried out to illustrate the benefits of its use as a replacement for diesel. The outcome of this cost analysis shows that 98% of the capital expenditure is consumed by the equipment, and 68.3% of the total cost of the equipment is spent on the solar photovoltaic cells. The hydrogen plant is classified as a large investment project because of its high initial cost which is about 1 billion US$; but this is justified because hydrogen is produced in a totally green way. When hydrogen is used as a fuel, no harmful emissions are obtained. 展开更多
关键词 sustainable alternative energy sources hydrogen fuel hydrogen properties hydrogen production hydrogen storage costanalysis inland waterway units
在线阅读 下载PDF
A Comprehensive Analysis of the Stability and Powering Performances of a Hard Sail-Assisted Bulk Carrier 被引量:1
5
作者 Md Daluar Hussain Osman Md Amin 《Journal of Marine Science and Application》 CSCD 2021年第3期426-445,共20页
The wind-assisted propulsion system is becoming one of the most popular and efficient ways to reduce both fuel consumption and carbon dioxide emission from the ships.In this study,several analyses have been carried ou... The wind-assisted propulsion system is becoming one of the most popular and efficient ways to reduce both fuel consumption and carbon dioxide emission from the ships.In this study,several analyses have been carried out on a model of bulk carrier fitted with five rigid sails with a 180°rotating mechanism for maximum usage of wind power and a telescopic reefing mechanism for folding it during berthing.The stability of the ship has been verified through the calculations of initial stability,static stability,and dynamic stability through the fulfillment of the weather criterion using MAXSURF software.The structural analysis of the sail was carried out in ANSYS static structural module.Several flow simulations were carried out in ANSYS fluent module to predict the thrusts produced by the sails at different apparent wind angles,which would in turn reduce the thrust required from the propeller.In this way,the brake horse powers required for different sail arrangements were analyzed to find out a guideline for this wind propulsion system to generate better powering performances.To consider drift and yaw effect on propulsion system,an MMG mathematical model–based simulation was carried out for different drift angles of motion of the ship considering hard sail–based wind loads.Through these analyses,it has been found out that the hard sail–based wind-assisted propulsion system in some cases have produced a reduction of more than 30%brake power in straight ahead motion and around 20%reduction in case of drifting ships compared to the model having no sails. 展开更多
关键词 Wind-assisted propulsion system Fuel consumption Brake power Carbon dioxide emission Wing sail Bulk carrier Sail ship stability CFD simulations
在线阅读 下载PDF
Thermodynamic Analysis of Alternative Marine Fuels for Marine Gas Turbine Power Plants 被引量:1
6
作者 Mohamed M. El Gohary Nader R. Ammar 《Journal of Marine Science and Application》 CSCD 2016年第1期95-103,共9页
The marine shipping industry faces challenges to reduce engine exhaust emissions and greenhouse gases (GHGs) from ships, and in particular, carbon dioxide. International regulatory bodies such as the International M... The marine shipping industry faces challenges to reduce engine exhaust emissions and greenhouse gases (GHGs) from ships, and in particular, carbon dioxide. International regulatory bodies such as the International Maritime Organization and National Environmental Agencies of many countries have issued rules and regulations to drastically reduce GHG and emissions emanating from marine sources. This study investigates the possibility of using natural gas and hydrogen as alternative fuels to diesel oil for marine gas turbines and uses a mathematical model to assess the effect of these alternative fuels on gas turbine thermodynamic performance. Results show that since natural gas is categorized as a hydrocarbon fuel, the thermodynamic performance of the gas turbine cycle using natural gas was close to that of the diesel case. However, the gas turbine thermal efficiency was found to be slightly lower for natural gas and hydrogen fuels compared to diesel fuel. 展开更多
关键词 ship emissions natural gas HYDROGEN gas turbine thermodynamic analysis gas turbine power plants greenhouse gases (GHGs)
在线阅读 下载PDF
Application of a RaNS and PF-Based Method to Study the Resistance and Motion of a Bulk Carrier 被引量:1
7
作者 Hafizul Islam Mashiur Rahaman +1 位作者 M.Rafiqul Islam Hiromichi Akimoto 《Journal of Marine Science and Application》 CSCD 2019年第3期271-281,共11页
Resistance prediction of ships using computational fluid dynamics has gained popularity over the years because of its high accuracy and low cost. This paper conducts numerical estimations of the ship resistance and mo... Resistance prediction of ships using computational fluid dynamics has gained popularity over the years because of its high accuracy and low cost. This paper conducts numerical estimations of the ship resistance and motion of a Japan bulk carrier model using SHIP_Motion, a Reynolds-averaged Navier–Stokes (RaNS)-based solver, and HydroSTAR, a commercial potential flow (PF)-based solver. The RaNS solver uses an overset-structured mesh and discretizes the flow field using the finite volume method, while the PF-based solver applies the three-dimensional panel method. In the calm water test, the total drag coefficient, sinkage, and trim were predicted using the RaNS solver following mesh dependency analysis, and the results were compared with the available experimental data. Next, calm water resistance was investigated for a range of Froude numbers. The added resistance in short-wave cases was simulated using both RaNS and PF solvers, and the results were compared. The PF solver showed better agreement with the RaNS solver for predicting motion responses than for predicting added resistance. While the added resistance results could not be directly validated because of the absence of experimental data, considering the previous accuracy of the RaNS solver in added resistance prediction and general added resistance profile of similar hull forms (bulk carriers), the prediction results could be concluded to be reliable. 展开更多
关键词 Computational ship HYDRODYNAMICS Japan bulk CARRIER RANS SIMULATION Potential flow SIMULATION Total drag RESISTANCE Added RESISTANCE
在线阅读 下载PDF
Effects of Temperature,Salinity,and Fluid Type on Acoustic Characteristics of Turbulent Flow Around Circular Cylinder
8
作者 SertaçBulut Selma Ergin 《Journal of Marine Science and Application》 CSCD 2021年第2期213-228,共16页
The effects of the temperature,salinity,and fluid type on the acoustic characteristics of turbulent flow around a circular cylinder were numerically investigated for the Reynolds numbers of 2.25×10^(4),4.5×1... The effects of the temperature,salinity,and fluid type on the acoustic characteristics of turbulent flow around a circular cylinder were numerically investigated for the Reynolds numbers of 2.25×10^(4),4.5×10^(4),and 9.0×10^(4).Various hybrid methodsReynolds-averaged Navier-Stokes(BANS)with the Ffowcs Williams and Hawkings(FWH)model,detached-eddy simulation(DES)with FWH,and large-eddy simulation with FWH-were used for the acoustic analyses,and their performances were evaluated by comparing the predicted results with the experimental data.The DES-FWH hybrid method was found to be suitable for the aero-and hydro-acoustic analysis.The hydro-acoustic measurements were performed in a silent circulation channel for the Reynolds number of 2.25×10^(4).The results showed that the fluid temperature caused an increase in the overall sound pressure levels(OASPLs)and the maximum sound pressure levels(SPL_(T))for the air medium;however,it caused a decrease for the water medium.The salinity had smaller effects on the OASPL and SPLT compared to the temperature.Moreover,the main peak frequency increased with the air temperature but decreased with the water temperature,and it was nearly constant with the change in the salinity ratio.The SPLT and OASPL for the water medium were quite higher than those for the air medium. 展开更多
关键词 Hydro-and aero-acoustics Computational acoustics Acoustic measurement Flownoise Hybrid acoustic methods Temperature effect Salinity effect
在线阅读 下载PDF
Analysis of Wave Energy Resources Around the Saint Martin Island in Bangladesh
9
作者 Mohua Das MRafiqul Islam Tariqul Islam Shazeeb 《Journal of Marine Science and Application》 CSCD 2021年第2期248-267,共20页
S aint Martin Island is the only coral island and one of the well-known tourist spots in Bangladesh.Because of its geographic location,electricity cannot be supplied from the mainland through the electricity grid.Dies... S aint Martin Island is the only coral island and one of the well-known tourist spots in Bangladesh.Because of its geographic location,electricity cannot be supplied from the mainland through the electricity grid.Diesel generators and solar power are the only means of electricity generation presently available there.Surrounded by the sea,Saint Martin Island has the ideal conditions for wave energy extraction.In this research,numerical models have been developed using the Delft3 D simulation software to determine the wave characteristics of different locations around Saint Martin Island.The results have been calibrated and validated against the data obtained from well-known data sources.The wave power densities have been calculated using the data obtained from the simulation models.The findings of the research show that the wave power density increases significantly from shallow water to deep water and a large amount of wave energy can be extracted during the summer and rainy monsoon seasons.The maximum hourly average value of wave power in 2016 has been determined to be6.90 kW/m at location with a water depth of 27.80 m.Wave energy resources are also observed to be sufficiently stable with the coefficients of variation of wave power density less than 0.62,except for December,January,and May of that particular year.Moreover,the annual effective energies have been determined to be within the range of 36.57 to 57.28 MWh/m,which will be sufficient to meet the electricity requirement of the island communities. 展开更多
关键词 Renewable energy Ocean waves Saint Martin Island Delft3D Wave power density Stability
在线阅读 下载PDF
Development of Bayesian Network Models for Risk-Based Ship Design 被引量:3
10
作者 Dimitris Konovessis Wenkui Cai Dracos Vassalos 《Journal of Marine Science and Application》 2013年第2期140-151,共12页
In the past fifteen years, the attention of ship safety treatment as an objective rather than a constraint has started to sweep through the whole maritime industry. The risk-based ship design (RBD) methodology, advo... In the past fifteen years, the attention of ship safety treatment as an objective rather than a constraint has started to sweep through the whole maritime industry. The risk-based ship design (RBD) methodology, advocating systematic integration of risk assessment within the conventional design process has started to takeoff. Despite this wide recognition and increasing popularity, important factors that could potentially undermine the quality of the results come from both quantitative and qualitative aspects during the risk assessment process. This paper details a promising solution by developing a formalized methodology for risk assessment through effective storing and processing of historical data combined with data generated through first-principle approaches. This method should help to generate appropriate risk models in the selected platform (Bayesian networks) which can be employed for decision making at design stare. 展开更多
关键词 risk-based ship design risk assessment data mining Bayesian networks ship safety
在线阅读 下载PDF
Numerical Study on the Hydrodynamic Performance of Antifouling Paints 被引量:2
11
作者 Utku Cem Karabulut Yavuz HakanÖzdemir BarışBarlas 《Journal of Marine Science and Application》 CSCD 2020年第1期41-52,共12页
This study presents a simple numerical method that can be used to evaluate the hydrodynamic performances of antifouling paints.Steady Reynolds-averaged Navier-Stokes equations were solved through a finite volume techn... This study presents a simple numerical method that can be used to evaluate the hydrodynamic performances of antifouling paints.Steady Reynolds-averaged Navier-Stokes equations were solved through a finite volume technique,whereas roughness was modeled with experimentally determined roughness functions.First,the methodology was validated with previous experimental studies with a flat plate.Second,flow around the Kriso Container Ship was examined.Lastly,full-scale results were predicted using Granville’s similarity law.Results indicated that roughness has a similar effect on the viscous pressure resistance and frictional resistance around a Reynolds number of 10^7.Moreover,the increase in frictional resistance due to roughness was calculated to be approximately 3%-5%at the ship scale depending on the paint. 展开更多
关键词 Antifouling paint Surface roughness Frictional resistance Ship resistance Computational fluid dynamics RANS
在线阅读 下载PDF
Dynamic Interaction of Parallel Moving Ships in Close Proximity 被引量:2
12
作者 M. Rafiqul Islam Motohiko Murai 《Journal of Marine Science and Application》 2013年第3期261-271,共11页
Nowadays,there are many studies conducted in the field of marine hydrodynamics which focus on two vessels traveling and floating in sufficiently close proximity to experience significant interactions.The hydrodynamic ... Nowadays,there are many studies conducted in the field of marine hydrodynamics which focus on two vessels traveling and floating in sufficiently close proximity to experience significant interactions.The hydrodynamic behavior of parallel moving ships in waves is an interesting and important topic of late.A numerical investigation has been carried out for the prediction of wave exciting forces and motion responses of parallel moving ships in regular waves.The numerical solution was based on 3D distribution technique and using the linear wave theory to determine the exciting forces and ship's motion.The speed effects have been considered in the Green function for more realistic results.The numerical computations of wave exciting forces and motion responses were carried out for a Mariner and Series 60 for the purpose of discovering different Froude numbers and different separation distances in head sea conditions.Based on the numerical computations,it was revealed that the sway,roll and yaw have a significant effect due to hydrodynamic interaction. 展开更多
关键词 3D source distribution dynamic interaction close proximity parallel moving ships ship motion
在线阅读 下载PDF
Numerical Simulation of the Flow around Two-dimensional Partially Cavitating Hydrofoils 被引量:2
13
作者 Fahri Celik Yasemin Arikan Ozden Sakir Bal 《Journal of Marine Science and Application》 2014年第3期245-254,共10页
In the present study, a new approach is applied to the cavity prediction for two-dimensional (2D) hydrofoils by the potential based boundary element method (BEM). The boundary element method is treated with the so... In the present study, a new approach is applied to the cavity prediction for two-dimensional (2D) hydrofoils by the potential based boundary element method (BEM). The boundary element method is treated with the source and doublet distributions on the panel surface and cavity surface by usethe of the Dirichlet type boundary conditions. An iterative solution approach is used to determine the cavity shape on partially cavitating hydrofoils. In the case of a specified cavitation number and cavity length, the iterative solution method proceeds by addition or subtraction of a displacement thickness on the cavity surface of the hydrofoil. The appropriate cavity shape is obtained by the dynamic boundary condition of the cavity surface and the kinematic boundary condition of the whole foil surface including the cavity. For a given cavitation number the cavity length of the 2D hydrofoil is determined according to the minimum error criterion among different cavity lengths, which satisfies the dynamic boundary condition on the cavity surface. The NACA 16006, NACA 16012 and NACA 16015 hydrofoil sections are investigated for two angles of attack. The results are compared with other potential based boundary element codes, the PCPAN and a commercial CFD code (FLUENT). Consequently, it has been shown that the results obtained from the two dimensional approach are consistent with those obtained from the others. 展开更多
关键词 boundary element method (BEM):sheet cavitation CFD HYDROFOIL cavity closure model 2D hydrofoils
在线阅读 下载PDF
Experimental Investigation of a Hydraulic Turbine for Hydrokinetic Power Generation in Irrigation/Rainfall Channels 被引量:1
14
作者 Aly Hassan Abdelbaky Elbatran Omar B.Yaakob Yasser M.Ahmed 《Journal of Marine Science and Application》 CSCD 2021年第1期144-155,共12页
The development of microchannels with open flow for use in irrigation and rainy areas is challenged by electricity generation via hydrokinetic devices in shallow and low velocity flows.Conventional hydrokinetic turbin... The development of microchannels with open flow for use in irrigation and rainy areas is challenged by electricity generation via hydrokinetic devices in shallow and low velocity flows.Conventional hydrokinetic turbines are known to be highly dependent on current speed and water depth.Another drawback of conventional turbines is their low efficiency.These shortcomings lead to the need to accelerate the flow in the channel system to enhance the extracted power.The method of deploying a novel turbine configuration in irrigation channels can help overcome the low performance of conventional hydrokinetic turbines.Therefore,this study experimentally presents a bidirectional diffuser-augmented channel that includes dual cross flow/Banki turbines.Results show that the maximum efficiency of the overall system with two turbines is nearly 55.7%.The efficiency is low relative to that of hydraulic turbines.Nevertheless,the result can be considered satisfactory given the low head of the present system.The use of this system will contribute to a highly efficient utilization of flows in rivers and channels for electrical energy generation in rural areas. 展开更多
关键词 Irrigation channels Cross flow turbine(CFT) Bidirectional diffuser-augmented(BDA) Tidal current Flow characteristics Efficiency
在线阅读 下载PDF
Comparative Analysis of the Separation Variation Influence on the Hydrodynamic Performance of a High Speed Trimaran 被引量:1
15
作者 Khaled Hafez Abdel-Rahman El-Kot 《Journal of Marine Science and Application》 2011年第4期377-393,共17页
This paper numerically investigates the influence of separation variation of the outriggers on the hydrodynamic performance of a high speed trimaran (HST) aiming at improving its applicability in diverse realistic d... This paper numerically investigates the influence of separation variation of the outriggers on the hydrodynamic performance of a high speed trimaran (HST) aiming at improving its applicability in diverse realistic disciplines. The present investigation was performed within the framework of the 2-D slender body method (SBM) by calculating the resistance of three symmetric trimaran series moving in a calm free surface of deep water. Each trimaran series comprises of 4681 configurations generated by considering 151 staggers (-50%≤a≤+ 100%), and 31 separations (100%≤β≤400%) for 81 Froude numbers (0.20≤Fn≤ 1.0). In developing the three trimaran series, Wigley-st. AMECRC-09, and NPL-4a models were used separately for both the main and side hulls of each individu;d series models. A computer macro named Tri-PL was created using the Visual Basic for Applications~. Tri-PL~ sequentially interfaced Maxsurfe then Hullspeed to generate the models of the three trimaran series together with their detailed hydrostatic particulars, followed by their resistance components. The numerical results were partially validated against the available published numerical calculations and experimental results, to benchmark the Tri-PL macro and hence to rely on the analysis outcomes. A graph template was creaLed within the framework of SigmaPlot to visualize the significant results of the Tri-PL properlv. 展开更多
关键词 high speed trimaran (HST) hydrodynamic interference factor (HIF) trimaran hydrodynamicperformance separation of outriggers
在线阅读 下载PDF
Resistance Analysis of a Semi-SWATH Design Concept in Shallow Water
16
作者 Arifah Ali Adi Maimun +1 位作者 Yasser M. Ahmed Rahimuddin 《Journal of Marine Science and Application》 CSCD 2017年第2期182-189,共8页
Resistance analysis is an important analytical method used to evaluate the hydrodynamic performance of High Speed Craft (HSC). Analysis of multihull resistance in shallow water is essential to the performance evaluati... Resistance analysis is an important analytical method used to evaluate the hydrodynamic performance of High Speed Craft (HSC). Analysis of multihull resistance in shallow water is essential to the performance evaluation of any type of HSC. Ships operating in shallow water experience increases in resistance because of changes in pressure distribution and wave pattern. In this paper, the shallow water performance of an HSC design concept, the semi-Small Waterplane Area Twin Hull (semi-SWATH) form, is studied. The hull is installed with fin stabilizers to reduce dynamic motion effects, and the resistance components of the hull, hull trim condition, and maximum wave amplitude around the hull are determined via calm water resistance tests in shallow water. These criteria are important in analyzing semi-SWATH resistance in shallow water and its relation to flow around hull. The fore fin angle is fixed to zero degrees, while the aft fin angle is varied to 0o, 5o, 10o, and 15o. For each configuration, investigations are conducted with depth Froude numbers (FrH) ranging from 0.65 to 1.2, and the resistance tests are performed in shallow water at the towing tank of UTM. Analysis results indicate that the resistance, wave pattern, and trim of the semi-SWATH hull form are affected by the fin angle. The resistance is amplified whereas the trim and sinkage are reduced as the fin angle increases. Increases in fin angle contribute to seakeeping and stability but affect the hull resistance of HSCs. 展开更多
关键词 resistance wave HEIGHT semi-SWATH SHALLOW water FIN STABILIZERS
在线阅读 下载PDF
Numerical Investigation of the Effect of Surface Roughness on the Viscous Resistance Components of Surface Ships
17
作者 Utku Cem Karabulut Yavuz HakanÖzdemir BarışBarlas 《Journal of Marine Science and Application》 CSCD 2022年第3期71-82,共12页
Recently,computational fluid dynamics(CFD)approaches have been effectively used by researchers to calculate the resistance characteristics of ships that have rough outer surfaces.These approaches are mainly based on m... Recently,computational fluid dynamics(CFD)approaches have been effectively used by researchers to calculate the resistance characteristics of ships that have rough outer surfaces.These approaches are mainly based on modifying wall functions using experimentally pre-determined roughness functions.Although several recent studies have shown that CFD can be an effective tool to calculate resistance components of ships for different roughness conditions,most of these studies were performed using the same ship geometry(KRISO Container Ship).Thus,the effect of ship geometry on the resistance characteristics of rough hull surfaces is worth investigating.In this study,viscous resistance components of four different ships are calculated for different roughness conditions.First,flat plate simulations are performed using a previous experimental study for comparison purposes.Then,the viscous resistance components of three-dimensional hulls are calculated.All simulations are performed using two different turbulence models to investigate the effect of the turbulence model on the results.An examination of the distributions of the local skin friction coefficients of the DTMB 5415 and Series 60 showed that the plumpness of the bow form has a significant effect on the increase in frictional resistance with increasing roughness.Another significant finding of the study is that viscous pressure resistance is directly affected by the surface roughness.For all geometries,viscous pressure resistances showed a significant increase for highly rough surfaces. 展开更多
关键词 surface roughness frictional resistance ship resistance computational fluid dynamics RANS
在线阅读 下载PDF
Mathematical simulation of steep waves at a focus point
18
作者 XU Li ZHANG Min WANG Yan-ying 《Journal of Marine Science and Application》 2007年第3期6-11,共6页
Mathematical models simulating steep waves at a focus point are presented in this paper. Simulations of extreme waves in a model basin were used to determine the loads on floating structures induced by the waves. Base... Mathematical models simulating steep waves at a focus point are presented in this paper. Simulations of extreme waves in a model basin were used to determine the loads on floating structures induced by the waves. Based on a new wave theory, numerical test results show that the simulation procedure is effective and the induced motion of water particles in the front of waves is an important factor influencing impact loads on floating bodies. 展开更多
关键词 random waves steep waves new wave theory wave loads floating structure.
在线阅读 下载PDF
A Rapid Estimation Method of Structural Fatigue Analysis for a 17k Ton DWT Oil Tanker
19
作者 Tuohan Chen Jianli Zheng Dong-Myung Bae 《Journal of Marine Science and Application》 2012年第2期184-190,共7页
Fatigue cracks and fatigue damage have been important issues for ships and offshore structures for a long time.However,in the last decade,with the introduction of higher tensile steel in hull structures and increasing... Fatigue cracks and fatigue damage have been important issues for ships and offshore structures for a long time.However,in the last decade,with the introduction of higher tensile steel in hull structures and increasingly large ship dimensions,the greater attention should be paid to fatigue problems.Most research focuses on how to more easily access the fatigue strength of ships.Also,the major classification societies have already released their fatigue assessment notes.However,due to the complexity of factors influencing fatigue performances,such as wave load and pressure from cargo,the combination of different stress components,stress on concentration of local structure details,means stress,and the corrosive environments,there are different specifications with varying classification societies,leading to the different results from different fatigue assessment methods.This paper established the Det Norske Veritas(DNV) classification notes "fatigue assessment of ship structures" that explains the process of fatigue assessment and simplified methods.Finally,a fatigue analysis was performed by use data of a real ship and the reliability of the result was assessed. 展开更多
关键词 rapid estimation structural fatigue analysis reliability analysis S-N curve DNV fatigue assessment rules
在线阅读 下载PDF
Ultimate Strength Assessment of Steel-Welded Hemispheres under External Hydrostatic Pressure
20
作者 Sang-Rai Cho Teguh Muttaqie +2 位作者 Seung Hyun Lee Jaewoo Paek Jung Min Sohn 《Journal of Marine Science and Application》 CSCD 2020年第4期615-633,共19页
This paper focusses on steel-welded hemispherical shells subjected to external hydrostatic pressure.The experimental and numerical investigations were performed to study their failure behaviour.The model was fabricate... This paper focusses on steel-welded hemispherical shells subjected to external hydrostatic pressure.The experimental and numerical investigations were performed to study their failure behaviour.The model was fabricated from mild steel and made through press forming and welding.We therefore considered the effect of initial shape imperfection,variation of thickness and residual stress obtained from the actual structures.Four hemisphere models designed with R/t from 50 to 130 were tested until failure.Prior to the test,the actual geometric imperfection and shell thickness were carefully measured.The comparisons of available design codes(PD 5500,ABS,DNV-GL)in calculating the collapse pressure were also highlighted against the available published test data on steel-welded hemispheres.Furthermore,the nonlinear FE simulations were also conducted to substantiate the ultimate load capacity and plastic deformation of the models that were tested.Parametric dependence of the level of sphericity,varying thickness and residual welding stresses were also numerically considered in the benchmark studies.The structure behaviour from the experiments was used to verify the numerical analysis.In this work,both collapse pressure and failure mode in the numerical model were consistent with the experimental model. 展开更多
关键词 Steel-welded hemisphere Collapse pressure Experiment Nonlinear FEA Ultimate strength formulation
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部