In this paper,a conventional soliton(CS)mode-locked erbium-doped fiber(EDF)laser was de-veloped using MAX phase material(MAX-PM)Nb_(4)AlC_(3)as a saturable absorber(SA).First,the liquid phase exfoliation(LPE)method wa...In this paper,a conventional soliton(CS)mode-locked erbium-doped fiber(EDF)laser was de-veloped using MAX phase material(MAX-PM)Nb_(4)AlC_(3)as a saturable absorber(SA).First,the liquid phase exfoliation(LPE)method was utilized to prepare Nb_(4)AlC_(3)nanosheets,and then a piece of tapered fiber was adopted to fabricate Nb_(4)AlC_(3)-SA.It was found that the saturation intensity and modulation depth of the Nb_(4)AlC_(3)-SA are 2.02 MW/cm^(2)and 1.88%.Based on the Nb_(4)AlC_(3)-SA,a conventional soliton(CS)mode-locked EDF laser was achieved.The central wavelength,pulse duration,and pulse repetition rate were found to be 1565.65 nm,615.37 fs,and 24.63 MHz,respectively.The performance is competitive and particularly superior in terms of pulse duration.This study fully confirms that Nb_(4)AlC_(3)possesses marvellous nonlinear saturable absorption properties and opens new possibilities for further research on air-stable ultrafast photon-ic devices.展开更多
Ground constructions and mines are severely threatened by ones. Safe and precise cavity detection is vital for reasonable cavity underground cavities especially those unsafe or inaccessible evaluation and disposal. Th...Ground constructions and mines are severely threatened by ones. Safe and precise cavity detection is vital for reasonable cavity underground cavities especially those unsafe or inaccessible evaluation and disposal. The conventional cavity detection methods and their limitation were analyzed. Those methods cannot form 3D model of underground cavity which is used for instructing the cavity disposal; and their precisions in detection are always greatly affected by the geological circumstance. The importance of 3D cavity detection in metal mine for safe exploitation was pointed out; and the 3D cavity laser detection method and its principle were introduced. A cavity auto scanning laser system was recommended to actualize the cavity 3D detection after comparing with the other laser detection systems. Four boreholes were chosen to verify the validity of the cavity auto scanning laser system. The results show that the cavity auto scanning laser system is very suitable for underground 3D cavity detection, especially for those inaccessible ones.展开更多
Here we report a femtosecond laser direct writing(a precise 3D printing also known as two-photon polymerization lithography) of hybrid organic-inorganic SZ2080^(TM)pre-polymer without using any photo-initiator and app...Here we report a femtosecond laser direct writing(a precise 3D printing also known as two-photon polymerization lithography) of hybrid organic-inorganic SZ2080^(TM)pre-polymer without using any photo-initiator and applying ~100 fs oscillator operating at 517 nm wavelength and 76 MHz repetition rate. The proof of concept was experimentally demonstrated and benchmarking 3D woodpile nanostructures, micro-scaffolds, free-form micro-object “Benchy” and bulk micro-cubes are successfully produced. The essential novelty underlies the fact that non-amplified laser systems delivering just 40-500 p J individual pulses are sufficient for inducing localized cross-linking reactions within hundreds of nanometers in cross sections. And it is opposed to the prejudice that higher pulse energies and lower repetition rates of amplified lasers are necessary for structuring non-photosensitized polymers. The experimental work is of high importance for fundamental understanding of laser enabled nanoscale 3D additive manufacturing and widens technology’ s field of applications where the avoidance of photo-initiator is preferable or is even a necessity, such as micro-optics, nano-photonics, and biomedicine.展开更多
Objective:To investigate the biological functions and molecular regulatory mechanisms of kinesin family member 11(KIF11)in colorectal cancer(CRC).Methods:The expression of KIF11 in CRC was examined by qRT⁃PCR and publ...Objective:To investigate the biological functions and molecular regulatory mechanisms of kinesin family member 11(KIF11)in colorectal cancer(CRC).Methods:The expression of KIF11 in CRC was examined by qRT⁃PCR and public databases.Functional assays(CCK⁃8,colony formation,EdU,and Transwell)were employed to evaluate KIF11’s roles in CRC progression.Western blot,RIP⁃qPCR,MeRIP⁃qPCR,and RNA stability assays were performed to elucidate the molecular mechanism of N6⁃methyladenosine(m6A)modification for KIF11.RNA sequencing(RNA⁃seq)and correlation analysis were used to examine the downstream mechanism of KIF11 regulation.Results:KIF11 was highly expressed in CRC and promoted CRC proliferation and migration.Mechanistically,methyltransferase⁃like 3(METTL3)/insulin like growth factor 2 mRNA binding protein 2(IGF2BP2)enhanced KIF11 mRNA stability and expression in an m6A⁃dependent way.Furthermore,by means of the PROM1/PI3K/AKT pathway,KIF11 facilitated the progression of CRC.Conclusion:The m6A modification of KIF11 by METTL3/IGF2BP2 contributes to CRC progression via the PI3K/AKT signaling pathway,highlighting its potential as a prognostic biomarker and therapeutic target.展开更多
Thin films of PrCoO3 were deposited on LaAlO3 substrates by pulsed laser deposition technique.X-ray diffraction result indicates that films are single phase and c-axis textured.To investigate the spin state transition...Thin films of PrCoO3 were deposited on LaAlO3 substrates by pulsed laser deposition technique.X-ray diffraction result indicates that films are single phase and c-axis textured.To investigate the spin state transition,Raman spectroscopy measurements were performed at different temperatures.The position of the Raman modes is found to increase while full width at half maximum(FWHM) of these modes is found to decrease with the decrease of temperature across spin state transition temperature(220 K) of PrCoO3.展开更多
文摘In this paper,a conventional soliton(CS)mode-locked erbium-doped fiber(EDF)laser was de-veloped using MAX phase material(MAX-PM)Nb_(4)AlC_(3)as a saturable absorber(SA).First,the liquid phase exfoliation(LPE)method was utilized to prepare Nb_(4)AlC_(3)nanosheets,and then a piece of tapered fiber was adopted to fabricate Nb_(4)AlC_(3)-SA.It was found that the saturation intensity and modulation depth of the Nb_(4)AlC_(3)-SA are 2.02 MW/cm^(2)and 1.88%.Based on the Nb_(4)AlC_(3)-SA,a conventional soliton(CS)mode-locked EDF laser was achieved.The central wavelength,pulse duration,and pulse repetition rate were found to be 1565.65 nm,615.37 fs,and 24.63 MHz,respectively.The performance is competitive and particularly superior in terms of pulse duration.This study fully confirms that Nb_(4)AlC_(3)possesses marvellous nonlinear saturable absorption properties and opens new possibilities for further research on air-stable ultrafast photon-ic devices.
基金Project(50490274) supported by the National Natural Science Foundation of China
文摘Ground constructions and mines are severely threatened by ones. Safe and precise cavity detection is vital for reasonable cavity underground cavities especially those unsafe or inaccessible evaluation and disposal. The conventional cavity detection methods and their limitation were analyzed. Those methods cannot form 3D model of underground cavity which is used for instructing the cavity disposal; and their precisions in detection are always greatly affected by the geological circumstance. The importance of 3D cavity detection in metal mine for safe exploitation was pointed out; and the 3D cavity laser detection method and its principle were introduced. A cavity auto scanning laser system was recommended to actualize the cavity 3D detection after comparing with the other laser detection systems. Four boreholes were chosen to verify the validity of the cavity auto scanning laser system. The results show that the cavity auto scanning laser system is very suitable for underground 3D cavity detection, especially for those inaccessible ones.
基金Project(S-MIP-20-17) supported by the Research Council of LithuaniaProject(871124) supported by the EU Horizon 2020, Research and Innovation program LASERLAB-EUROPE JRA。
文摘Here we report a femtosecond laser direct writing(a precise 3D printing also known as two-photon polymerization lithography) of hybrid organic-inorganic SZ2080^(TM)pre-polymer without using any photo-initiator and applying ~100 fs oscillator operating at 517 nm wavelength and 76 MHz repetition rate. The proof of concept was experimentally demonstrated and benchmarking 3D woodpile nanostructures, micro-scaffolds, free-form micro-object “Benchy” and bulk micro-cubes are successfully produced. The essential novelty underlies the fact that non-amplified laser systems delivering just 40-500 p J individual pulses are sufficient for inducing localized cross-linking reactions within hundreds of nanometers in cross sections. And it is opposed to the prejudice that higher pulse energies and lower repetition rates of amplified lasers are necessary for structuring non-photosensitized polymers. The experimental work is of high importance for fundamental understanding of laser enabled nanoscale 3D additive manufacturing and widens technology’ s field of applications where the avoidance of photo-initiator is preferable or is even a necessity, such as micro-optics, nano-photonics, and biomedicine.
基金江苏省卫生健康委员会医学科研重点项目(K2023024)789 Outstanding Talent Program of SAHNMU(789ZYRC202090147)。
文摘Objective:To investigate the biological functions and molecular regulatory mechanisms of kinesin family member 11(KIF11)in colorectal cancer(CRC).Methods:The expression of KIF11 in CRC was examined by qRT⁃PCR and public databases.Functional assays(CCK⁃8,colony formation,EdU,and Transwell)were employed to evaluate KIF11’s roles in CRC progression.Western blot,RIP⁃qPCR,MeRIP⁃qPCR,and RNA stability assays were performed to elucidate the molecular mechanism of N6⁃methyladenosine(m6A)modification for KIF11.RNA sequencing(RNA⁃seq)and correlation analysis were used to examine the downstream mechanism of KIF11 regulation.Results:KIF11 was highly expressed in CRC and promoted CRC proliferation and migration.Mechanistically,methyltransferase⁃like 3(METTL3)/insulin like growth factor 2 mRNA binding protein 2(IGF2BP2)enhanced KIF11 mRNA stability and expression in an m6A⁃dependent way.Furthermore,by means of the PROM1/PI3K/AKT pathway,KIF11 facilitated the progression of CRC.Conclusion:The m6A modification of KIF11 by METTL3/IGF2BP2 contributes to CRC progression via the PI3K/AKT signaling pathway,highlighting its potential as a prognostic biomarker and therapeutic target.
基金Project supported by the Second Stage of Brain Korea 21 Project
文摘Thin films of PrCoO3 were deposited on LaAlO3 substrates by pulsed laser deposition technique.X-ray diffraction result indicates that films are single phase and c-axis textured.To investigate the spin state transition,Raman spectroscopy measurements were performed at different temperatures.The position of the Raman modes is found to increase while full width at half maximum(FWHM) of these modes is found to decrease with the decrease of temperature across spin state transition temperature(220 K) of PrCoO3.