期刊文献+
共找到18,278篇文章
< 1 2 250 >
每页显示 20 50 100
Data-based Optimal Control for Discrete-time Zero-sum Games of 2-D Systems Using Adaptive Critic Designs 被引量:8
1
作者 WEI Qing-Lai ZHANG Hua-Guang CUI Li-Li 《自动化学报》 EI CSCD 北大核心 2009年第6期682-692,共11页
关键词 自适应系统 最优控制 离散时间 自动化系统
在线阅读 下载PDF
Two-to-one differential game via improved MOGWO 被引量:1
2
作者 BAI Yu ZHOU Di +2 位作者 ZHANG Bolun HE Zhen HE Ping 《Journal of Systems Engineering and Electronics》 2025年第1期233-255,共23页
When the maneuverability of a pursuer is not significantly higher than that of an evader,it will be difficult to intercept the evader with only one pursuer.Therefore,this article adopts a two-to-one differential game ... When the maneuverability of a pursuer is not significantly higher than that of an evader,it will be difficult to intercept the evader with only one pursuer.Therefore,this article adopts a two-to-one differential game strategy,the game of kind is generally considered to be angle-optimized,which allows unlimited turns,but these practices do not take into account the effect of acceleration,which does not correspond to the actual situation,thus,based on the angle-optimized,the acceleration optimization and the acceleration upper bound constraint are added into the game for consideration.A two-to-one differential game problem is proposed in the three-dimensional space,and an improved multi-objective grey wolf optimization(IMOGWO)algorithm is proposed to solve the optimal game point of this problem.With the equations that describe the relative motions between the pursuers and the evader in the three-dimensional space,a multi-objective function with constraints is given as the performance index to design an optimal strategy for the differential game.Then the optimal game point is solved by using the IMOGWO algorithm.It is proved based on Markov chains that with the IMOGWO,the Pareto solution set is the solution of the differential game.Finally,it is verified through simulations that the pursuers can capture the escapee,and via comparative experiments,it is shown that the IMOGWO algorithm performs well in terms of running time and memory usage. 展开更多
关键词 differential game improved multi-objective grey wolf optimization(IMOGWO) cooperative pursuit optimal game point
在线阅读 下载PDF
Stochastic Periodic Solutions for Two Populations Game Models with Impulses
3
作者 HOU Meiting QIU Xiaoling 《应用数学》 北大核心 2025年第2期453-467,共15页
The article studies the evolutionary dynamics of two-population two-strategy game models with and without impulses. First, the payment matrix is given and two evolutionary dynamics models are established by adding sto... The article studies the evolutionary dynamics of two-population two-strategy game models with and without impulses. First, the payment matrix is given and two evolutionary dynamics models are established by adding stochastic and impulse. For the stochastic model without impulses, the existence and uniqueness of solution, and the existence of positive periodic solutions are proved, and a sufficient condition for strategy extinction is given. For the stochastic model with impulses, the existence of positive periodic solutions is proved. Numerical results show that noise and impulses directly affect the model, but the periodicity of the model does not change. 展开更多
关键词 Periodic solution Stochastic game IMPULSES Strategy extinct
在线阅读 下载PDF
Solving Stackelberg prediction games using inexact hyper-gradient methods
4
作者 SHI Xu WANG Jiulin +1 位作者 JIANG Rujun SONG Weizheng 《运筹学学报(中英文)》 北大核心 2025年第3期93-123,共31页
The Stackelberg prediction game(SPG)is a bilevel optimization frame-work for modeling strategic interactions between a learner and a follower.Existing meth-ods for solving this problem with general loss functions are ... The Stackelberg prediction game(SPG)is a bilevel optimization frame-work for modeling strategic interactions between a learner and a follower.Existing meth-ods for solving this problem with general loss functions are computationally expensive and scarce.We propose a novel hyper-gradient type method with a warm-start strategy to address this challenge.Particularly,we first use a Taylor expansion-based approach to obtain a good initial point.Then we apply a hyper-gradient descent method with an ex-plicit approximate hyper-gradient.We establish the convergence results of our algorithm theoretically.Furthermore,when the follower employs the least squares loss function,our method is shown to reach an e-stationary point by solving quadratic subproblems.Numerical experiments show our algorithms are empirically orders of magnitude faster than the state-of-the-art. 展开更多
关键词 Stackelberg prediction game approximate hyper-gradient bilevel opti-mization
在线阅读 下载PDF
Mode-switching cooperative defense strategy for the orbit pursuit-evasion-defense game
5
作者 Yongshang Wei Tianxi Liu Cheng Wei 《Defence Technology(防务技术)》 2025年第2期272-286,共15页
This paper presents a mode-switching collaborative defense strategy for spacecraft pursuit-evasiondefense scenarios.In these scenarios,the pursuer tries to avoid the defender while capturing the evader,while the evade... This paper presents a mode-switching collaborative defense strategy for spacecraft pursuit-evasiondefense scenarios.In these scenarios,the pursuer tries to avoid the defender while capturing the evader,while the evader and defender form an alliance to prevent the pursuer from achieving its goal.First,the behavioral modes of the pursuer,including attack and avoidance modes,were established using differential game theory.These modes are then recognized by an interactive multiple model-matching algorithm(IMM),that uses several smooth variable structure filters to match the modes of the pursuer and update their probabilities in real time.Based on the linear-quadratic optimization theory,combined with the results of strategy identification,a two-way cooperative optimal strategy for the defender and evader is proposed,where the evader aids the defender to intercept the pursuer by performing luring maneuvers.Simulation results show that the interactive multi-model algorithm based on several smooth variable structure filters perform well in the strategy identification of the pursuer,and the cooperative defense strategy based on strategy identification has good interception performance when facing pursuers,who are able to flexibly adjust their game objectives. 展开更多
关键词 Cooperative policy Differential games Orbit pursuit-evasion-defense game Mod recognition
在线阅读 下载PDF
Self-play training and analysis for GEO inspection game with modular actions
6
作者 ZHOU Rui ZHONG Weichao +1 位作者 LI Wenlong ZHANG Hao 《Journal of Systems Engineering and Electronics》 2025年第5期1353-1373,共21页
This paper comprehensively explores the impulsive on-orbit inspection game problem utilizing reinforcement learning and game training methods.The purpose of the spacecraft is to inspect the entire surface of a non-coo... This paper comprehensively explores the impulsive on-orbit inspection game problem utilizing reinforcement learning and game training methods.The purpose of the spacecraft is to inspect the entire surface of a non-cooperative target with active maneuverability in front lighting.First,the impulsive orbital game problem is formulated as a turn-based sequential game problem.Second,several typical relative orbit transfers are encapsulated into modules to construct a parameterized action space containing discrete modules and continuous parameters,and multi-pass deep Q-networks(MPDQN)algorithm is used to implement autonomous decision-making.Then,a curriculum learning method is used to gradually increase the difficulty of the training scenario.The backtracking proportional self-play training framework is used to enhance the agent’s ability to defeat inconsistent strategies by building a pool of opponents.The behavior variations of the agents during training indicate that the intelligent game system gradually evolves towards an equilibrium situation.The restraint relations between the agents show that the agents steadily improve the strategy.The influence of various factors on game results is tested. 展开更多
关键词 impulsive orbital game inspection mission turnbased reinforcement learning modular action self-play
在线阅读 下载PDF
Variable reward function-driven strategies for impulsive orbital attack-defense games under multiple constraints and victory conditions
7
作者 Liran Zhao Sihan Xu +1 位作者 Qinbo Sun Zhaohui Dang 《Defence Technology(防务技术)》 2025年第9期159-183,共25页
This paper investigates impulsive orbital attack-defense(AD)games under multiple constraints and victory conditions,involving three spacecraft:attacker,target,and defender.In the AD scenario,the attacker aims to breac... This paper investigates impulsive orbital attack-defense(AD)games under multiple constraints and victory conditions,involving three spacecraft:attacker,target,and defender.In the AD scenario,the attacker aims to breach the defender's interception to rendezvous with the target,while the defender seeks to protect the target by blocking or actively pursuing the attacker.Four different maneuvering constraints and five potential game outcomes are incorporated to more accurately model AD game problems and increase complexity,thereby reducing the effectiveness of traditional methods such as differential games and game-tree searches.To address these challenges,this study proposes a multiagent deep reinforcement learning solution with variable reward functions.Two attack strategies,Direct attack(DA)and Bypass attack(BA),are developed for the attacker,each focusing on different mission priorities.Similarly,two defense strategies,Direct interdiction(DI)and Collinear interdiction(CI),are designed for the defender,each optimizing specific defensive actions through tailored reward functions.Each reward function incorporates both process rewards(e.g.,distance and angle)and outcome rewards,derived from physical principles and validated via geometric analysis.Extensive simulations of four strategy confrontations demonstrate average defensive success rates of 75%for DI vs.DA,40%for DI vs.BA,80%for CI vs.DA,and 70%for CI vs.BA.Results indicate that CI outperforms DI for defenders,while BA outperforms DA for attackers.Moreover,defenders achieve their objectives more effectively under identical maneuvering capabilities.Trajectory evolution analyses further illustrate the effectiveness of the proposed variable reward function-driven strategies.These strategies and analyses offer valuable guidance for practical orbital defense scenarios and lay a foundation for future multi-agent game research. 展开更多
关键词 Orbital attack-defense game Impulsive maneuver Multi-agent deep reinforcement learning Reward function design
在线阅读 下载PDF
Multi-round dynamic game decision-making of UAVs based on decision tree
8
作者 WANG Linmeng WANG Yuhui +1 位作者 CHEN Mou DING Shulin 《Journal of Systems Engineering and Electronics》 2025年第4期1006-1016,共11页
To address the confrontation decision-making issues in multi-round air combat,a dynamic game decision method is proposed based on decision tree for the confrontation of unmanned aerial vehicle(UAV)air combat.Based on ... To address the confrontation decision-making issues in multi-round air combat,a dynamic game decision method is proposed based on decision tree for the confrontation of unmanned aerial vehicle(UAV)air combat.Based on game the-ory and the confrontation characteristics of air combat,a dynamic game process is constructed including the strategy sets,the situation information,and the maneuver decisions for both sides of air combat.By analyzing the UAV’s flight dyna-mics and the both sides’information,a payment matrix is estab-lished through the situation advantage function,performance advantage function,and profit function.Furthermore,the dynamic game decision problem is solved based on the linear induction method to obtain the Nash equilibrium solution,where the decision tree method is introduced to obtain the optimal maneuver decision,thereby improving the situation advantage in the next round of confrontation.According to the analysis,the simulation results for the confrontation scenarios of multi-round air combat are presented to verify the effectiveness and advan-tages of the proposed method. 展开更多
关键词 unmanned aerial vehicle(UAV) multi-round con-frontation dynamic game decision decision tree.
在线阅读 下载PDF
Weapon-target assignment for unmanned aerial vehicles: A multi-strategy threshold public goods game approach
9
作者 Wenhao Bi Zhaoxi Wang +1 位作者 Yang Xu An Zhang 《Defence Technology(防务技术)》 2025年第6期221-237,共17页
As a crucial process in the coordinated strikes of unmanned aerial vehicles(UAVs), weapon-target assignment is vital for optimizing the allocation of available weapons and effectively exploiting the capabilities of UA... As a crucial process in the coordinated strikes of unmanned aerial vehicles(UAVs), weapon-target assignment is vital for optimizing the allocation of available weapons and effectively exploiting the capabilities of UAVs. Existing weapon-target assignment methods primarily focus on macro cluster constraints while neglecting individual strategy updates. This paper proposes a novel weapon-target assignment method for UAVs based on the multi-strategy threshold public goods game(PGG). By analyzing the concept mapping between weapon-target assignment for UAVs and multi-strategy threshold PGG, a weapon-target assignment model for UAVs based on the multi-strategy threshold PGG is established, which is adaptively complemented by the diverse cooperation-defection strategy library and the utility function based on the threshold mechanism. Additionally, a multi-chain Markov is formulated to quantitatively describe the stochastic evolutionary dynamics, whose evolutionary stable distribution is theoretically derived through the development of a strategy update rule based on preference-based aspiration dynamic. Numerical simulation results validate the feasibility and effectiveness of the proposed method, and the impacts of selection intensity, preference degree and threshold on the evolutionary stable distribution are analyzed. Comparative simulations show that the proposed method outperforms GWO, DE, and NSGA-II, achieving 17.18% higher expected utility than NSGA-II and reducing evolutionary stable times by 25% in large-scale scenario. 展开更多
关键词 Unmanned aerial vehicles(UAVs) Weapon-target assignment Public goods game(PGG) Multi-chain markov Strategy update rule
在线阅读 下载PDF
LINEAR QUADRATIC NONZERO-SUM DIFFERENTIAL GAMES WITH RANDOM JUMPS 被引量:3
10
作者 吴臻 于志勇 《应用数学和力学》 CSCD 北大核心 2005年第8期945-950,共6页
The existence and uniqueness of the solutions for one kind of forward-backward stochastic differential equations with Brownian motion and Poisson process as the noise source were given under the monotone conditions.Th... The existence and uniqueness of the solutions for one kind of forward-backward stochastic differential equations with Brownian motion and Poisson process as the noise source were given under the monotone conditions.Then these results were applied to nonzero-sum differential games with random jumps to get the explicit form of the open-loop Nash equilibrium point by the solution of the forward-backward stochastic differential equations. 展开更多
关键词 随机微分方程 泊松过程 随机微分对策
在线阅读 下载PDF
Design and pricing of maintenance service contract based on Nash non-cooperative game approach 被引量:1
11
作者 SU Chun HUANG Kui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期118-129,共12页
Nowadays manufacturers are facing fierce challenge.Apart from the products,providing customers with multiple maintenance options in the service contract becomes more popular,since it can help to improve customer satis... Nowadays manufacturers are facing fierce challenge.Apart from the products,providing customers with multiple maintenance options in the service contract becomes more popular,since it can help to improve customer satisfaction,and ultimately promote sales and maximize profit for the manufacturer.By considering the combinations of corrective maintenance and preventive maintenance,totally three types of maintenance service contracts are designed.Moreover,attractive incentive and penalty mechanisms are adopted in the contracts.On this basis,Nash non-cooperative game is applied to analyze the revenue for both the manufacturer and customers,and so as to optimize the pricing mechanism of maintenance service contract and achieve a win-win situation.Numerical experiments are conducted.The results show that by taking into account the incentive and penalty mechanisms,the revenue can be improved for both the customers and manufacturer.Moreover,with the increase of repair rate and improvement factor in the preventive maintenance,the revenue will increase gradually for both the parties. 展开更多
关键词 maintenance service contract Nash game incentive and penalty mechanism corrective maintenance preventive maintenance
在线阅读 下载PDF
Analytical game strategies for active UAV defense considering response delays
12
作者 Xiaopeng Gong Wanchun Chen +3 位作者 Wengui Lei Jinyang Wang Zhongyuan Chen Yunyun Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第12期191-210,共20页
In the realm of aerial warfare,the protection of Unmanned Aerial Vehicles(UAVs) against adversarial threats is crucial.In order to balance the impact of response delays and the demand for onboard applications,this pap... In the realm of aerial warfare,the protection of Unmanned Aerial Vehicles(UAVs) against adversarial threats is crucial.In order to balance the impact of response delays and the demand for onboard applications,this paper derives three analytical game strategies for the active defense of UAVs from differential game theory,accommodating the first-order dynamic delays.The targeted UAV executes evasive maneuvers and launches a defending missile to intercept the attacking missile,which constitutes a UAVMissile-Defender(UMD) three-body game problem.We explore two distinct operational paradigms:the first involves the UAV and the defender working collaboratively to intercept the incoming threat,while the second prioritizes UAV self-preservation,with independent maneuvering away from potentially sacrificial engagements.Starting with model linearization and order reduction,the Collaborative Interception Strategy(CIS) is first derived via a linear quadratic differential game formulation.Building upon CIS,we further explore two distinct strategies:the Informed Defender Interception Strategy(IDIS),which utilizes UAV maneuvering information,and the Unassisted Defender Interception Strategy(UDIS),which does not rely on UAV maneuvering information.Additionally,we investigate the conditions for the existence of saddle point solutions and their relationship with vehicle maneuverability and response agility.The simulations demonstrate the effectiveness and advantages of the proposed strategies. 展开更多
关键词 Active defense Unmanned aerial vehicles(UAVs) Three-body game Differential game Analytical game strategy Response delays
在线阅读 下载PDF
Linear-quadratic and norm-bounded combined differential game guidance scheme with obstacle avoidance for attacking defended aircraft in three-player engagement
13
作者 Xintao Wang Ming Yang +2 位作者 Songyan Wang Mingzhe Hou Tao Chao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第12期136-155,共20页
A differential game guidance scheme with obstacle avoidance,based on the formulation of a combined linear quadratic and norm-bounded differential game,is designed for a three-player engagement scenario,which includes ... A differential game guidance scheme with obstacle avoidance,based on the formulation of a combined linear quadratic and norm-bounded differential game,is designed for a three-player engagement scenario,which includes a pursuer,an interceptor,and an evader.The confrontation between the players is divided into four phases(P1-P4)by introducing the switching time,and proposing different guidance strategies according to the phase where the static obstacle is located:the linear quadratic game method is employed to devise the guidance scheme for the energy optimization when the obstacle is located in the P1 and P3 stages;the norm-bounded differential game guidance strategy is presented to satisfy the acceleration constraint under the circumstance that the obstacle is located in the P2 and P4 phases.Furthermore,the radii of the static obstacle and the interceptor are taken as the design parameters to derive the combined guidance strategy through the dead-zone function,which guarantees that the pursuer avoids the static obstacle,and the interceptor,and attacks the evader.Finally,the nonlinear numerical simulations verify the performance of the game guidance strategy. 展开更多
关键词 Active defense aircraft Differential game theory Three-player confrontation Energy optimization Acceleration constraint Obstacle avoidance
在线阅读 下载PDF
4/2随机波动率模型下的非零和投资与风险控制博弈
14
作者 朱怀念 詹志嘉 宾宁 《运筹与管理》 北大核心 2025年第5期149-155,I0051,I0052,共9页
近年,GRASSELLI(2017)提出的4/2随机波动率模型构建了一种新型波动动态框架,其扩散项系Heston模型与3/2模型扩散项的线性组合。该混合结构不仅具有Heston模型和3/2模型的基本特征,还有一些它们所不具备的新特性,因此能够更好地描述金融... 近年,GRASSELLI(2017)提出的4/2随机波动率模型构建了一种新型波动动态框架,其扩散项系Heston模型与3/2模型扩散项的线性组合。该混合结构不仅具有Heston模型和3/2模型的基本特征,还有一些它们所不具备的新特性,因此能够更好地描述金融市场中风险资产价格的动态变化。本文基于4/2随机波动率模型的优势,研究了两个处于竞争关系的保险公司之间的最优投资和风险控制问题。具体来说,在保险风险建模方面,采用扩散近似风险模型刻画保单赔付动态过程。金融市场环境设定为混合波动率框架,包含无风险资产与符合4/2随机波动特征的风险资产。保险公司通过双重策略实现风险管理:一方面动态调整承保规模控制保险风险暴露,另一方面优化金融资产配置结构,最终达成公司价值稳健增长的战略目标。同时考虑到市场竞争,基于相对财富视角刻画保险公司间竞争行为,构建双主体非零和投资—风险控制动态博弈模型,以实现终端时刻相对财富期望效用最大化。运用动态规划方法推导得到Hamilton-Jacobi-Bellman(HJB)方程,并通过求解获取了博弈均衡策略,进一步讨论了本文模型的两种特殊情形。最后,通过数值算例给出了参数的敏感性分析,并进行了经济意义解释。 展开更多
关键词 投资与风险控制 非零和博弈 纳什均衡 HAMILTON-JACOBI-BELLMAN方程
在线阅读 下载PDF
基于交互环境的智能化心理测评(综述) 被引量:1
15
作者 黄凯奇 康雅萱 +5 位作者 晏成信 胡世宇 高文斌 王利刚 陶婷 曾杨睿宇 《中国心理卫生杂志》 北大核心 2025年第4期337-343,共7页
游戏化心理测评利用游戏元素来增强被试的参与动机并提升测量准确性,但该类方法过于关注静态结果。通过对融入人工智能技术的游戏化心理测评进行系统性研究,本文定义了基于交互环境的智能心理测评范式,其基于对游戏内动态过程数据的分析... 游戏化心理测评利用游戏元素来增强被试的参与动机并提升测量准确性,但该类方法过于关注静态结果。通过对融入人工智能技术的游戏化心理测评进行系统性研究,本文定义了基于交互环境的智能心理测评范式,其基于对游戏内动态过程数据的分析,能够精准地描记受测者在交互情境中的操作过程与结果,更有效地表征个体心理状态和行为特征。这种新范式展现了在需求、数据收集与分析技术方面的进步与较大的发展潜力。 展开更多
关键词 心理测评 基于游戏的测评 人工智能 游戏化 严肃游戏 综述
在线阅读 下载PDF
基于混合变动专家权重的模糊零和博弈多目标规划模型
16
作者 丁雪枫 杨育豆 《同济大学学报(自然科学版)》 北大核心 2025年第2期306-315,共10页
针对现有模糊零和博弈难以适应环境复杂度变化及忽视收益矩阵构造的不足,提出了一种基于混合动态专家集成权重确定模型的T阶球形模糊零和博弈多目标求解方法,以帮助博弈方在资源总量保持相对恒定且局中各方追求自身利益最大化的情境下... 针对现有模糊零和博弈难以适应环境复杂度变化及忽视收益矩阵构造的不足,提出了一种基于混合动态专家集成权重确定模型的T阶球形模糊零和博弈多目标求解方法,以帮助博弈方在资源总量保持相对恒定且局中各方追求自身利益最大化的情境下选择最优竞争策略。首先,提出了一种同时考虑客观个体和主观评价信息的混合变动专家集成权重计算模型,该机制下得到的专家权重会随专家的主观评价信息而变化,更接近实际情况。其次,利用加权平均法搭建了T阶球形模糊零和博弈多目标规划模型,该方法不受策略数量的影响,且求得的最优混合策略能反映博弈各方竞争策略的具体可行性和分歧程度。最后,通过实例计算和对比分析,验证了所提出方法的实用性和优越性。结果表明,所提出的模型具有决策效率高、计算复杂度低、受方案数量影响小的特点,且得到的概率形式的混合解可以有效地反映策略间的差异程度,当最优策略失效时可提供替代建议,有助于避免重复决策,浪费决策资源。 展开更多
关键词 零和博弈 T阶球形模糊集 专家可信度量表 HAUSDORFF距离 混合变动专家集成权重
在线阅读 下载PDF
模型暧昧下基于CRRA效用准则的非零和投资博弈
17
作者 朱怀念 莫仕茵 《应用概率统计》 北大核心 2025年第1期101-115,共15页
随着社会的不断发展,我们所需要求解模型的复杂度不断上升,模型的不确定性(也称为模型暧昧性,model ambiguity)也在不断扩大.为了更准确地在考虑模型暧昧性下做出投资决策,本文研究了两个具有竞争关系的暧昧厌恶投资者之间的鲁棒非零和... 随着社会的不断发展,我们所需要求解模型的复杂度不断上升,模型的不确定性(也称为模型暧昧性,model ambiguity)也在不断扩大.为了更准确地在考虑模型暧昧性下做出投资决策,本文研究了两个具有竞争关系的暧昧厌恶投资者之间的鲁棒非零和投资博弈问题.假设两个投资者均可将财富投资于由一种无风险资产和一种风险资产构成的金融市场中,用相对绩效描述两个投资者之间的竞争关系,构建了鲁棒非零和随机微分投资博弈模型.利用动态规划原理给出了博弈问题对应的HJB(Hamilton-Jacobi-Bellman)方程,通过求解HJB方程得到了均衡投资策略与相应值函数的解析表达.研究发现:(1)与不考虑模型暧昧性情形相比,考虑模型暧昧性能够显著增加投资者的效用水平;(2)激烈的市场竞争环境会使投资者之间产生羊群效应,相互模仿对手的投资决策,采取风险冒进的投资策略,从而增加金融市场的系统风险;(3)相比于传统(即不考虑博弈)的投资策略,当考虑竞争对手的相对绩效时,Nash均衡策略下的投资者更愿意冒高风险去追求高收益,进而拉大自身与对手之间的财富差距,并且投资者的反应敏感系数(也可反映市场竞争的激烈程度)越大,其对风险的偏好程度也越高. 展开更多
关键词 非零和投资博弈 暧昧 NASH均衡 HJB方程
在线阅读 下载PDF
基于AR技术的榫卯科普游戏交互设计 被引量:2
18
作者 肖永杰 《包装工程》 北大核心 2025年第4期436-446,共11页
目的利用增强现实(AR)技术开发榫卯科普游戏,通过虚拟与现实结合的交互设计,提高用户对传统榫卯结构的理解与兴趣,传播中国传统木工技艺。方法游戏基于用户体验设计原则,使用Vuforia和Unity构建AR交互。通过平面检测技术和图片追踪技术... 目的利用增强现实(AR)技术开发榫卯科普游戏,通过虚拟与现实结合的交互设计,提高用户对传统榫卯结构的理解与兴趣,传播中国传统木工技艺。方法游戏基于用户体验设计原则,使用Vuforia和Unity构建AR交互。通过平面检测技术和图片追踪技术识别现实环境,将榫卯结构的3D模型投影到用户设备上,提供沉浸式拼接体验。项目设计了引导和反馈功能,并采用层次分析法(AHP)和模糊综合评价法(FCE)进行测试以优化交互流畅度。结果数据显示,用户评价较好,分数为85.12,尤其是在科普效果和交互引导两方面。用户通过游戏对榫卯结构的拼接原理有了更深入的理解,且对传统文化兴趣有所提升。结论AR的榫卯游戏成功实现了传统文化的传播,为用户提供了有趣的学习方式。研究表明,AR在文化科普中的应用潜力巨大,未来可拓展更多传统技艺的交互式体验。 展开更多
关键词 科普游戏 交互设计 AR游戏
在线阅读 下载PDF
基于视频游戏的空间能力测评 被引量:1
19
作者 尚俊杰 石祝 沈科杰 《心理科学进展》 北大核心 2025年第1期11-24,共14页
空间能力是个体对客体或空间图形在头脑中进行识别、编码、贮存、表征、分解组合和抽象概括的能力,是个体理解自身所处环境并解决问题的认知基础。准确、便捷、有效地测评空间能力,对增强STEM教育教学水平和人才培养质量都具有重要意义... 空间能力是个体对客体或空间图形在头脑中进行识别、编码、贮存、表征、分解组合和抽象概括的能力,是个体理解自身所处环境并解决问题的认知基础。准确、便捷、有效地测评空间能力,对增强STEM教育教学水平和人才培养质量都具有重要意义。由于空间能力受多因素共同作用,具有复杂性、多维度、内隐性的特点,使得利用计算机评价空间能力比较困难。本研究旨在准确、有效、大规模地测评空间能力,将使用多模态学习分析方法探索学习者空间认知行为表现特征,并基于视频游戏环境研发空间能力隐形测评关键技术与工具。具体包括:1)构建空间能力内在表征框架和评价指标体系;2)基于多模态学习分析构建学习者空间能力行为表现模型;3)探索视频游戏影响空间能力的关键因素,并使用游戏引擎开发基于视频游戏的测评工具;4)使用以证据为中心的设计框架和贝叶斯网络模型,开发并部署能够推断和预测空间能力的测评算法;5)在实验室和真实课堂情境开展实证研究,验证测评工具有效性。研究成果将有利于理解人类空间认知过程和行为表现,拓展和丰富空间能力相关理论,并为大规模数字化测评提供关键技术支撑。 展开更多
关键词 基于游戏的测评 空间能力 多模态学习分析 游戏化学习 隐形测评
在线阅读 下载PDF
考虑多重异质性的区域环境合作治理小世界网络演化博弈研究 被引量:1
20
作者 范如国 吴婷 《管理工程学报》 北大核心 2025年第1期140-154,共15页
由于环境污染具有负外部性,跨区域的环境问题不断涌现,因此,地方政府之间的合作治理是化解区域环境问题的重要路径,也是未来中国区域环境治理的发展方向。本文基于复杂网络理论、演化博弈理论,考虑地方政府间的偏好异质性和收入异质性,... 由于环境污染具有负外部性,跨区域的环境问题不断涌现,因此,地方政府之间的合作治理是化解区域环境问题的重要路径,也是未来中国区域环境治理的发展方向。本文基于复杂网络理论、演化博弈理论,考虑地方政府间的偏好异质性和收入异质性,引入权重来刻画不同地区在合作中的贡献度的差异,并纳入收益分配机制、违约金机制,构建了加权NW小世界网络上地方政府间合作治理的演化博弈模型;通过数值仿真,分析了合作收益和成本、违约金、异质性三方面对网络合作水平的影响。研究结果表明:合作收益增加与合作成本降低均能促进地方政府合作治理网络向着帕累托最优方向演化,且当合作收益和合作成本到达一定水平时,经济发展水平低的地区对合作收益和合作成本的变化更为敏感。适当的违约金可以促进地方政府合作行为的演化,但违约金只是起到保障和制约的作用,仅提高违约金难以促进合作策略全扩散。节点异质性对于提高地方政府区域合作治理水平是一把双刃剑。 展开更多
关键词 复杂网络 演化博弈 区域环境 合作治理 异质性
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部