期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
基于反向投影的zero-shot learning目标分类算法研究 被引量:1
1
作者 冯鹏 庹红娅 +2 位作者 乔凌峰 王洁欣 敬忠良 《计算机应用研究》 CSCD 北大核心 2017年第11期3291-3294,共4页
Zero-shot learning(ZSL)是针对没有训练样本的类别进行分类的问题。传统回归方法的核心是将视觉特征投影到语义空间,没有充分利用视觉特征自身包含的样本信息,同时训练计算量大。提出基于反向投影的ZSL目标分类方法,将类别原型投影到... Zero-shot learning(ZSL)是针对没有训练样本的类别进行分类的问题。传统回归方法的核心是将视觉特征投影到语义空间,没有充分利用视觉特征自身包含的样本信息,同时训练计算量大。提出基于反向投影的ZSL目标分类方法,将类别原型投影到视觉空间,利用视觉特征的语义性学习出映射函数,参数优化过程仅通过解析解就可以获得。在两个基准数据集的实验结果表明,提出的反向投影方法分类结果较传统回归方法和其他现有方法有大幅提升,并且训练时间大大减少,可以更好地推广到未知类别的分类问题上。 展开更多
关键词 zero-shot learning 目标分类 反向投影 解析解
在线阅读 下载PDF
基于零样本学习的风力机故障诊断方法 被引量:1
2
作者 潘美琪 贺兴 《上海交通大学学报》 北大核心 2025年第5期561-568,共8页
在工程实践中,风力机故障诊断面临训练故障与实际故障类别不同的情况,为实现对风力机未知故障的诊断,需要将训练过程中习得的故障特征信息迁移至未知故障中.不同于直接建立故障样本与故障类别间映射关系的传统方法,提出一种基于零样本... 在工程实践中,风力机故障诊断面临训练故障与实际故障类别不同的情况,为实现对风力机未知故障的诊断,需要将训练过程中习得的故障特征信息迁移至未知故障中.不同于直接建立故障样本与故障类别间映射关系的传统方法,提出一种基于零样本学习的风力机故障诊断方法来完成故障特征迁移.通过描述每种故障的属性建立故障属性矩阵,将其嵌入故障样本空间与故障类别空间之中;并基于卷积神经网络建立故障属性学习器,基于欧氏距离建立故障分类器,形成从故障样本预测故障属性进而分类故障的诊断流程.最后通过与其他零样本学习方法的对比验证了所提故障诊断方法的有效性和优越性. 展开更多
关键词 风力机故障诊断 零样本学习 卷积神经网络 知识-数据混合驱动
在线阅读 下载PDF
基于CLIP模型和知识数据库的零样本动作识别 被引量:2
3
作者 侯永宏 郑皓春 +1 位作者 高嘉俊 任懿 《天津大学学报(自然科学与工程技术版)》 EI CAS 北大核心 2025年第1期91-100,共10页
零样本动作识别旨在从已知类别的动作样本数据中学习知识,并将其迁移到未知的动作类别上,从而实现对未知动作样本的识别和分类.现有的零样本动作识别模型依赖有限的训练数据,可学习到的先验知识有限,难以将视觉特征准确地映射到语义标签... 零样本动作识别旨在从已知类别的动作样本数据中学习知识,并将其迁移到未知的动作类别上,从而实现对未知动作样本的识别和分类.现有的零样本动作识别模型依赖有限的训练数据,可学习到的先验知识有限,难以将视觉特征准确地映射到语义标签上,是限制零样本学习性能提升的关键因素.针对上述问题,本文提出了一种引入外部知识数据库和CLIP模型的零样本学习框架,利用多模态CLIP模型通过自监督对比学习方式积累的知识,来扩充零样本动作识别模型的先验知识.同时,设计了时序编码器,以弥补CLIP模型时序建模能力的欠缺.为了使模型学习到更丰富的语义特征,缩小视觉特征和语义标签之间的语义鸿沟,本文扩展了已知动作类别的语义标签,用更为详细的描述语句代替简单的文本标签,丰富了文本表示的语义信息;在此基础上,在模型外部构建了一个知识数据库,在不增加模型参数规模的条件下为模型提供额外的辅助信息,强化视觉特征与文本特征表示之间的关联关系.最后,本文遵循零样本学习规范,对模型进行微调,使其适应零样本动作识别任务,提高了模型的泛化能力.所提方法在HMDB51和UCF101两个主流数据集上进行了广泛实验,实验数据表明,该方法的识别性能相比目前的先进方法在上述两个数据集上分别提升了3.8%和2.3%,充分体现了所提方法的有效性. 展开更多
关键词 零样本学习 动作识别 CLIP模型 知识数据库
在线阅读 下载PDF
基于多标签零样本学习的滚动轴承故障诊断 被引量:5
4
作者 张永宏 邵凡 +3 位作者 赵晓平 王丽华 吕凯扬 张中洋 《振动与冲击》 EI CSCD 北大核心 2022年第11期55-64,89,共11页
近年来,数据驱动的方法在滚动轴承故障诊断领域发展迅速,但面对工程实际中没有历史记录的故障类型,仍存在故障特征学习不充分、误诊率高等不足。针对上述问题,提出了多标签零样本学习(multi-label zero-shot learning,MLZSL)故障诊断方... 近年来,数据驱动的方法在滚动轴承故障诊断领域发展迅速,但面对工程实际中没有历史记录的故障类型,仍存在故障特征学习不充分、误诊率高等不足。针对上述问题,提出了多标签零样本学习(multi-label zero-shot learning,MLZSL)故障诊断方法。首先,使用短时傅里叶变换(short-time Fourier transform,STFT)对可见类和未见类样本进行预处理,将得到的时频图像输入残差深度可分离卷积神经网络(residual depthwise separable convolutional neural network,RDSCNN)进行特征提取,再使用可见类故障特征训练属性学习网络,依靠属性学习网络预测未见类故障样本的属性向量,最终实现对未见类故障的诊断。设计了零样本条件下的故障诊断试验,结果表明MLZSL能将可见类故障属性迁移到未见类,并有效诊断未见类故障。 展开更多
关键词 零样本学习(zsl) 特征提取 多标签 属性学习器 滚动轴承
在线阅读 下载PDF
零样本图像识别 被引量:13
5
作者 兰红 方治屿 《电子与信息学报》 EI CSCD 北大核心 2020年第5期1188-1200,共13页
深度学习在人工智能领域已经取得了非常优秀的成就,在有监督识别任务中,使用深度学习算法训练海量的带标签数据,可以达到前所未有的识别精确度。但是,由于对海量数据的标注工作成本昂贵,对罕见类别获取海量数据难度较大,所以如何识别在... 深度学习在人工智能领域已经取得了非常优秀的成就,在有监督识别任务中,使用深度学习算法训练海量的带标签数据,可以达到前所未有的识别精确度。但是,由于对海量数据的标注工作成本昂贵,对罕见类别获取海量数据难度较大,所以如何识别在训练过程中少见或从未见过的未知类仍然是一个严峻的问题。针对这个问题,该文回顾近年来的零样本图像识别技术研究,从研究背景、模型分析、数据集介绍、实验分析等方面全面阐释零样本图像识别技术。此外,该文还分析了当前研究存在的技术难题,并针对主流问题提出一些解决方案以及对未来研究的展望,为零样本学习的初学者或研究者提供一些参考。 展开更多
关键词 零样本学习 深度卷积神经网络 视觉语义嵌入 泛化零样本学习
在线阅读 下载PDF
基于视觉-语言预训练模型的零样本迁移学习方法综述 被引量:3
6
作者 孙仁科 许靖昊 +2 位作者 皇甫志宇 李仲年 许新征 《计算机工程》 CAS CSCD 北大核心 2024年第10期1-15,共15页
近年来随着人工智能(AI)技术在计算机视觉与自然语言处理等单模态领域表现出愈发优异的性能,多模态学习的重要性和必要性逐渐展现出来,其中基于视觉-语言预训练模型的零样本迁移(ZST)方法得到了国内外研究者的广泛关注。得益于预训练模... 近年来随着人工智能(AI)技术在计算机视觉与自然语言处理等单模态领域表现出愈发优异的性能,多模态学习的重要性和必要性逐渐展现出来,其中基于视觉-语言预训练模型的零样本迁移(ZST)方法得到了国内外研究者的广泛关注。得益于预训练模型强大的泛化性能,使用视觉-语言预训练模型不仅能提高零样本识别任务的准确率,而且能够解决部分传统方法无法解决的零样本下游任务问题。对基于视觉-语言预训练模型的ZST方法进行概述,首先介绍了零样本学习(FSL)的传统方法,并对其主要形式加以总结;然后阐述了基于视觉-语言预训练模型的ZST和FSL的区别及其可以解决的新任务;其次介绍了基于视觉-语言预训练模型的ZST方法在样本识别、目标检测、语义分割、跨模态生成等下游任务中的应用情况;最后对现有的基于视觉-语言预训练模型的ZST方法存在的问题进行分析并对未来的研究方向进行展望。 展开更多
关键词 零样本学习 视觉-语言预训练模型 零样本迁移 多模态 计算机视觉
在线阅读 下载PDF
基于属性描述的零样本滚动轴承故障诊断 被引量:5
7
作者 赵晓平 吕凯扬 +1 位作者 邵凡 张中洋 《振动与冲击》 EI CSCD 北大核心 2022年第15期105-115,共11页
数据驱动方式是对故障诊断模型进行训练的主要方法,然而因为机器运转环境复杂,没有可用的目标故障样本供模型训练而导致特征学习不充分的情况时有发生。针对这一问题,结合零样本学习(zero-shot learning,ZSL)思想,从属性描述的角度出发... 数据驱动方式是对故障诊断模型进行训练的主要方法,然而因为机器运转环境复杂,没有可用的目标故障样本供模型训练而导致特征学习不充分的情况时有发生。针对这一问题,结合零样本学习(zero-shot learning,ZSL)思想,从属性描述的角度出发,提出了一种基于Xception网络和卷积神经网络(convolutional neural networks,CNN)的零样本滚动轴承故障诊断方法,即X-CNN故障诊断模型。X-CNN模型首先使用Xception网络对故障信号时频图进行特征提取;根据故障类别的属性描述构建属性矩阵,使用CNN对提取的特征进行属性学习;最后通过属性矩阵的相似度比较完成诊断工作。通过零样本条件下的故障诊断试验,证明了X-CNN故障诊断模型可以在不使用测试类样本进行训练的情况下完成滚动轴承故障诊断工作。 展开更多
关键词 零样本学习(zsl) Xception 卷积神经网络(CNN) 故障诊断 属性描述
在线阅读 下载PDF
基于局部保持典型相关分析的零样本动作识别 被引量:2
8
作者 冀中 郭威辰 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2017年第9期975-983,共9页
动作识别领域需要识别的类别越来越多,这使得标注足够多的训练数据越来越难.零样本学习是针对传统机器学习收集和标注数据日益困难而提出的一种新思路.针对基于零样本学习的动作识别问题,提出了一种基于局部保持典型相关分析映射的方法... 动作识别领域需要识别的类别越来越多,这使得标注足够多的训练数据越来越难.零样本学习是针对传统机器学习收集和标注数据日益困难而提出的一种新思路.针对基于零样本学习的动作识别问题,提出了一种基于局部保持典型相关分析映射的方法.该方法使用流形约束的典型相关分析将视觉特征和辅助特征映射到一个公共特征空间,并且在映射过程中保留视觉特征和辅助特征的局部信息,还考虑了域转换所带来的不利影响,同时采用自训练和hubness修正等方法增强所提方法的鲁棒性.通过在主流数据集HMDB51和UCF101上的大量实验,表明所提方法具有较好的零样本学习性能. 展开更多
关键词 零样本学习 动作识别 典型相关分析 局部保持
在线阅读 下载PDF
基于视觉误差与语义属性的零样本图像分类 被引量:4
9
作者 徐戈 肖永强 +3 位作者 汪涛 陈开志 廖祥文 吴运兵 《计算机应用》 CSCD 北大核心 2020年第4期1016-1022,共7页
在图像分类的实际应用过程中,部分类别可能完全没有带标签的训练数据。零样本学习(ZSL)的目的是将带标签类别的图像特征等知识迁移到无标签的类别上,实现无标签类别的正确分类。现有方法在测试时无法显式地区分输入图像属于已知类还是... 在图像分类的实际应用过程中,部分类别可能完全没有带标签的训练数据。零样本学习(ZSL)的目的是将带标签类别的图像特征等知识迁移到无标签的类别上,实现无标签类别的正确分类。现有方法在测试时无法显式地区分输入图像属于已知类还是未知类,很大程度上导致未知类在传统设定下的ZSL和广义设定下的ZSL(GZSL)上的预测效果相差甚远。为此,提出一种融合视觉误差与属性语义信息的方法来缓解零样本图像分类中的预测偏置问题。首先,设计一种半监督学习方式的生成对抗网络架构来获取视觉误差信息,由此预测图像是否属于已知类;然后,提出融合属性语义信息的零样本图像分类网络来实现零样本图像分类;最后,测试融合视觉误差与属性语义的零样本图像分类方法在数据集AwA2和CUB上的效果。实验结果表明,与对比模型相比,所提方法有效缓解了预测偏置问题,其调和指标H在AwA2(Animal with Attributes)上提升了31.7个百分点,在CUB(Caltech-UCSD-Birds-200-2011)上提升了8.7个百分点。 展开更多
关键词 零样本学习 图像分类 生成对抗网络 视觉误差 属性语义
在线阅读 下载PDF
融合多Prompt模板的零样本关系抽取模型 被引量:1
10
作者 许亮 张春 +1 位作者 张宁 田雪涛 《计算机应用》 CSCD 北大核心 2023年第12期3668-3675,共8页
Prompt范式被广泛应用于零样本的自然语言处理(NLP)任务中,但是现有基于Prompt范式的零样本关系抽取(RE)模型存在答案空间映射难构造与模板选择依赖人工的问题,无法取得较好的效果。针对这些问题,提出一种融合多Prompt模板的零样本RE模... Prompt范式被广泛应用于零样本的自然语言处理(NLP)任务中,但是现有基于Prompt范式的零样本关系抽取(RE)模型存在答案空间映射难构造与模板选择依赖人工的问题,无法取得较好的效果。针对这些问题,提出一种融合多Prompt模板的零样本RE模型。首先,将零样本RE任务定义为掩码语言模型(MLM)任务,舍弃答案空间映射的构造,将模板输出的词与关系描述文本在词向量空间中进行比较,以此判断关系类别;其次,引入待抽取关系类别的描述文本的词性作为特征,学习该特征与各个模板之间的权重;最后,利用该权重融合多个模板输出的结果,以此减少人工选取的Prompt模板引起的性能损失。在FewRel(Few-shot Relation extraction dataset)和TACRED(Text Analysis Conference Relation Extraction Dataset)这两个数据集上的实验结果显示,与目前最优的模型RelationPrompt相比,所提模型在不同数据资源设置下,F1值分别提升了1.48~19.84个百分点和15.27~15.75个百分点。可见,所提模型在零样本RE任务上取得了显著的效果提升。 展开更多
关键词 关系抽取 信息抽取 零样本学习 Prompt范式 预训练语言模型
在线阅读 下载PDF
逆合成孔径成像雷达隐身目标零样本识别
11
作者 周春花 魏维伟 +2 位作者 张学成 郑鑫 程冕之 《系统工程与电子技术》 EI CSCD 北大核心 2023年第10期3116-3121,共6页
针对现有算法不具备识别出未在训练过程中出现的新类别目标的能力问题,提出了针对逆合成孔径成像雷达(inverse synthetic aperture imaging radar,ISAR)隐身目标零样本学习识别方法。首先,基于飞行类动态目标三维网络化物理模型,使用FEK... 针对现有算法不具备识别出未在训练过程中出现的新类别目标的能力问题,提出了针对逆合成孔径成像雷达(inverse synthetic aperture imaging radar,ISAR)隐身目标零样本学习识别方法。首先,基于飞行类动态目标三维网络化物理模型,使用FEKO电磁场仿真软件进行编程,实现ISAR可见的源目标图像数据生成;然后,在此基础上形成不同飞机类目标细节属性的文本语义特征表达。所提出的新类型算法网络模型采用两个变分自编码器,分别进行了图像和语义的特征生成,从而让网络学习到模态不变的特征表达。使用可见类别数据训练网络,并获得能够凭借语义信息生成图像特征的模型。训练识别采用该学习模型不可见的未知新类别目标,从不可见未知的新类别文本语义生成不可见未知的新目标图像特征信息,支撑了不可见未知的新目标识别,统计未知的新类别识别正确率为75%。 展开更多
关键词 逆合成孔径成像雷达 零样本学习 隐身目标
在线阅读 下载PDF
原型对齐和域感知的零样本哈希
12
作者 董峰 王永欣 +1 位作者 马玉玲 王奎奎 《计算机工程》 CAS CSCD 北大核心 2024年第5期260-271,共12页
为了实现对未见类别图像的有效检索,零样本哈希(ZSH)方法通常将类别属性中的监督知识从已见类转移到未见类。然而,获取类别属性需要花费额外的计算资源,并且视觉特征和类别属性之间存在跨模态的异构鸿沟。此外,现有方法忽视了强偏差问题... 为了实现对未见类别图像的有效检索,零样本哈希(ZSH)方法通常将类别属性中的监督知识从已见类转移到未见类。然而,获取类别属性需要花费额外的计算资源,并且视觉特征和类别属性之间存在跨模态的异构鸿沟。此外,现有方法忽视了强偏差问题,导致模型错误地将已见类样本识别为未见类,从而降低了检索精度。与此同时,ZSH在保持哈希码和原始数据语义一致性以及实现哈希码的离散优化等方面也面临着挑战。为此,提出一种原型对齐和域感知的ZSH方法,其不依赖类别属性等特殊监督知识,能够节省注释属性的花销同时避免跨模态异构鸿沟的影响。首先计算各类样本在海明空间中的原型,然后通过对齐哈希码和类原型来学习语义一致的哈希码。为了避免松弛策略造成的量化误差,提出一种离散优化算法来求解哈希码的离散约束,并且实现线性的计算复杂度。同时,设计一个域感知策略用于分离源域和目标域样本,以缓解强偏差问题的影响。在a PY、AWA2和Image Net数据集上的实验结果表明,该方法的检索精度相较对比方法中的最优值分别提升了2.6、9.4和14.9个百分点,训练时间也远低于大部分对比方法。 展开更多
关键词 哈希 图像检索 零样本学习 原型对齐 域感知
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部