Magnetic bubbles have again become a subject of significant attention following the experimental observation of topologically nontrivial magnetic skyrmions. In recent work, tailoring the shape of the bubbles is consid...Magnetic bubbles have again become a subject of significant attention following the experimental observation of topologically nontrivial magnetic skyrmions. In recent work, tailoring the shape of the bubbles is considered a key factor for their dynamics in spintronic devices. In addition to the reported circular, elliptical, and square bubbles, here we observe triangular bubble domains in bismuth-doped yttrium iron garnet(Bi-YIG) using Kerr microscopy. The bubble domains evolve from discrete circular to latticed triangular and hexagonal shapes. Further, the orientation of the triangular bubbles in the hexagonal lattices can be flipped by decreasing the magnetic field. The sixfold in-plane magnetic anisotropy of Bi-YIG(111) crystal, which is presumably the mechanism underlying the triangular shape of the bubbles, is measured as1179 erg/cm~3. The study of the morphologies of topologically trivial bubbles in YIG offers insight into nontrivial spin textures, which is appealing for future spintronic applications.展开更多
Nowadays the yttrium iron garnet(Y3Fe5O12, YIG) films are widely used in the microwave and spin wave devices due to their low damping constant and long propagation distance for spin waves. However, the performances, e...Nowadays the yttrium iron garnet(Y3Fe5O12, YIG) films are widely used in the microwave and spin wave devices due to their low damping constant and long propagation distance for spin waves. However, the performances, especially the frequency stability, are seriously affected by the relaxation of the interface magnetic moments. In this study, the effect of out-of-plane magnetization depinning on the resonance frequency shift(△ fr) was investigated for 3-μm YIG films grown on Gd3Ga5O12(GGG)(111) substrates by liquid-phase epitaxy. It is revealed that the ferromagnetic resonance(FMR) and spin wave propagation exhibit a very slow relaxation with relaxation time τ even longer than one hour under an out-of-plane external magnetic bias field. The △ fr span of 15.15–24.70 MHz is observed in out-of-plane FMR and forward volume spin waves. Moreover, the △ fr and τ depend on the magnetic field. The △ fr can be attributed to that the magnetic moments break away from the pinning layer at the YIG/GGG interface. The thickness of the pinning layer is estimated to be about9.48 nm to 15.46 nm according to the frequency shifting. These results indicate that △ fr caused by the pinning layer should be addressed in the design of microwave and spin wave devices, especially in the transverse magnetic components.展开更多
In this work,we report the reorientation of magnetization by spin-orbit torque(SOT)in YIG/Pt bilayers.The SOT is investigated by measuring the spin Hall magnetoresistance(SMR),which is highly sensitive to the directio...In this work,we report the reorientation of magnetization by spin-orbit torque(SOT)in YIG/Pt bilayers.The SOT is investigated by measuring the spin Hall magnetoresistance(SMR),which is highly sensitive to the direction of magnetic moment of YIG.An external in-plane rotating magnetic field which is applied to the YIG/Pt bilayers,and the evolutions of SMR under different injected currents in the Pt layer,result in deviation of SMR curve from the standard shape.We conclude that the SOT caused by spin accumulation near the interface between YIG and Pt can effectively reorient the inplane magnetic moment of YIG.This discovery provides an effective way to modulate YIG magnetic moments by electrical methods.展开更多
In the previous study of longitudinal spin Seebeck effect(LSSE), the thermal gradient was often generated by inserting the sample between the cool bath and the hot bath. For practical use, this method is too cumbers...In the previous study of longitudinal spin Seebeck effect(LSSE), the thermal gradient was often generated by inserting the sample between the cool bath and the hot bath. For practical use, this method is too cumbersome to be easily integrated into modern electrical circuits. Since the laser can be easily focused into a small region, it will be more convenient and friendly to the integrated circuit. In this paper, we systematically investigate the LSSE and spin Hall magnetoresistance(SMR) of the Pt/Y_3 Fe_5 O_(12) heterostructure under focused laser-heating. We find that the extremely large voltage of inverse spin Hall effect(VISHE) can be obtained by reducing the diameter of laser or increasing the number of light spots.Meanwhile, even under the illumination of the ultraviolet light which will excite the electron from the valence band to the conduction band in yttrium iron garnet(YIG), the magnitude of SMR is nearly constant. It indicates that the spin transport behavior of the adjacent Pt is independent of the electron configuration of YIG. The laser-heating method to generate LSSE will be very promising for modern integrated electronic circuits and will promote the application of spin caloritronics in practice.展开更多
Y_(3)Fe_(5)O_(12)(YIG) and Bi Y_(3)Fe_(5)O_(12)(Bi:YIG) films were epitaxially grown on a series of(111)-oriented garnet substrates using pulsed laser deposition. Structural and ferromagnetic resonance characterizatio...Y_(3)Fe_(5)O_(12)(YIG) and Bi Y_(3)Fe_(5)O_(12)(Bi:YIG) films were epitaxially grown on a series of(111)-oriented garnet substrates using pulsed laser deposition. Structural and ferromagnetic resonance characterizations demonstrated the high epitaxial quality, extremely low magnetic loss and coherent strain state in these films. Using these epitaxial films as model systems, we systematically investigated the evolution of magnetic anisotropy(MA) with epitaxial strain and chemical doping. For both the YIG and Bi:YIG films, the compressive strain tends to align the magnetic moment in the film plane while the tensile strain can compete with the demagnetization effect and stabilize perpendicular MA. We found that the strain-induced lattice elongation/compression along the out-of-plane [111] axis is the key parameter that determines the MA. More importantly, the strain-induced tunability of MA can be enhanced significantly by Bi doping;meanwhile, the ultralow damping feature persists. We clarified that the cooperation between strain and chemical doping could realize an effective control of MA in garnet-type ferrites, which is essential for spintronic applications.展开更多
This paper presents numerous physical characteristics of Ca, V, Sn doped yttrium iron garnet (CaVSn:YIG) irradiated with 0.56GeV carbon ions delivered by the Heavy Ion Research Facility of Lanzhou (HIRFL). The reason...This paper presents numerous physical characteristics of Ca, V, Sn doped yttrium iron garnet (CaVSn:YIG) irradiated with 0.56GeV carbon ions delivered by the Heavy Ion Research Facility of Lanzhou (HIRFL). The reason for change of the magnetic properties of the samples induced by energetic carbon ions bombardment is discussed. By comparison of this results with the irradiation effects of YIG induced by energetic argon, krypton and xenon obtained on the GANIL, Caen,France, it is concluded that the irradiation effect of 0.56 GeV C6+ on CaVSn.YIG arises from the electronic energy losses.展开更多
The tunability of the terahertz dielectric spectra of Y3Fe5O12(YIG) ceramics under external optical field were investigated at room temperature by using terahertz time-domain spectroscopy. The Y3Fe5O12 ceramics anneal...The tunability of the terahertz dielectric spectra of Y3Fe5O12(YIG) ceramics under external optical field were investigated at room temperature by using terahertz time-domain spectroscopy. The Y3Fe5O12 ceramics annealed at 1 100 and 1 300 ℃ were successfully synthesized by a modified Pechini process. The samples were characterized by X-ray diffraction and no impurity phase has been detected. The crystallite sizes of the YIG ceramics are calculated to be about 50 nm for TS=1 100 ℃ and 77 nm for TS=1 300 ℃, respectively. And Scanning Electron Microscope(SEM) images show that the grain size is positively correlated with the sintering temperature. Application of the optical field leads to an appreciable tuning of the dielectric constant of the sample sintered at 1 100 ℃, which reaches up to 17.3% at 0.6 THz. Meanwhile the dielectric loss tangent of the sample sintered at 1 100 ℃ changes about 123.9%. On the contrast, both the dielectric constant and the loss tangent for the sample sintered at 1 300 ℃ keep invariable with the light excitation. These findings are attributed to space charges hopping among the grain boundaries excited by the external optical field.展开更多
基金support by the National Natural Science Foundation of China (Grant Nos. 52061135105 and 12074025)support by the National Natural Science Foundation of China (Grant Nos. 11974079, 12274083, and 12221004)the Shanghai Municipal Science and Technology Basic Research Project (Grant No. 22JC1400200)。
文摘Magnetic bubbles have again become a subject of significant attention following the experimental observation of topologically nontrivial magnetic skyrmions. In recent work, tailoring the shape of the bubbles is considered a key factor for their dynamics in spintronic devices. In addition to the reported circular, elliptical, and square bubbles, here we observe triangular bubble domains in bismuth-doped yttrium iron garnet(Bi-YIG) using Kerr microscopy. The bubble domains evolve from discrete circular to latticed triangular and hexagonal shapes. Further, the orientation of the triangular bubbles in the hexagonal lattices can be flipped by decreasing the magnetic field. The sixfold in-plane magnetic anisotropy of Bi-YIG(111) crystal, which is presumably the mechanism underlying the triangular shape of the bubbles, is measured as1179 erg/cm~3. The study of the morphologies of topologically trivial bubbles in YIG offers insight into nontrivial spin textures, which is appealing for future spintronic applications.
基金National Natural Science Foundation of China(Grant Nos.11674187 and 51871127)Technology on Electronic Test&Measurement Laboratory(Grant No.6142001180103).
文摘Nowadays the yttrium iron garnet(Y3Fe5O12, YIG) films are widely used in the microwave and spin wave devices due to their low damping constant and long propagation distance for spin waves. However, the performances, especially the frequency stability, are seriously affected by the relaxation of the interface magnetic moments. In this study, the effect of out-of-plane magnetization depinning on the resonance frequency shift(△ fr) was investigated for 3-μm YIG films grown on Gd3Ga5O12(GGG)(111) substrates by liquid-phase epitaxy. It is revealed that the ferromagnetic resonance(FMR) and spin wave propagation exhibit a very slow relaxation with relaxation time τ even longer than one hour under an out-of-plane external magnetic bias field. The △ fr span of 15.15–24.70 MHz is observed in out-of-plane FMR and forward volume spin waves. Moreover, the △ fr and τ depend on the magnetic field. The △ fr can be attributed to that the magnetic moments break away from the pinning layer at the YIG/GGG interface. The thickness of the pinning layer is estimated to be about9.48 nm to 15.46 nm according to the frequency shifting. These results indicate that △ fr caused by the pinning layer should be addressed in the design of microwave and spin wave devices, especially in the transverse magnetic components.
基金Project supported by the Natural Science Foundation of Shaanxi Province,China(Grant No.2020JM-088)the National Natural Science Foundation of China(Grant Nos.51572222,51701158,and 51872241)the Fundamental Research Funds for the Central Universities,China(Grant Nos.3102017jc01001 and 310201911cx044).
文摘In this work,we report the reorientation of magnetization by spin-orbit torque(SOT)in YIG/Pt bilayers.The SOT is investigated by measuring the spin Hall magnetoresistance(SMR),which is highly sensitive to the direction of magnetic moment of YIG.An external in-plane rotating magnetic field which is applied to the YIG/Pt bilayers,and the evolutions of SMR under different injected currents in the Pt layer,result in deviation of SMR curve from the standard shape.We conclude that the SOT caused by spin accumulation near the interface between YIG and Pt can effectively reorient the inplane magnetic moment of YIG.This discovery provides an effective way to modulate YIG magnetic moments by electrical methods.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11604265,51471134,51572222,and 11704386)the Fundamental Research Funds for the Central Universities,China(Grant Nos.3102018zy044 and 3102017jc01001)
文摘In the previous study of longitudinal spin Seebeck effect(LSSE), the thermal gradient was often generated by inserting the sample between the cool bath and the hot bath. For practical use, this method is too cumbersome to be easily integrated into modern electrical circuits. Since the laser can be easily focused into a small region, it will be more convenient and friendly to the integrated circuit. In this paper, we systematically investigate the LSSE and spin Hall magnetoresistance(SMR) of the Pt/Y_3 Fe_5 O_(12) heterostructure under focused laser-heating. We find that the extremely large voltage of inverse spin Hall effect(VISHE) can be obtained by reducing the diameter of laser or increasing the number of light spots.Meanwhile, even under the illumination of the ultraviolet light which will excite the electron from the valence band to the conduction band in yttrium iron garnet(YIG), the magnitude of SMR is nearly constant. It indicates that the spin transport behavior of the adjacent Pt is independent of the electron configuration of YIG. The laser-heating method to generate LSSE will be very promising for modern integrated electronic circuits and will promote the application of spin caloritronics in practice.
基金supported by the National Basic Research Program of China (Grant No. 2020YFA0309100)the National Natural Science Foundation of China (Grant Nos. 12074365 and U2032218)+3 种基金the Fundamental Research Funds for the Central Universities (Grant Nos. WK9990000108, WK9990000102, and WK2030000035)Hefei Science Center CAS Foundation (Grant No. 2021HSC-UE010)partially carried out at the USTC Center for Micro and Nanoscale Research and Fabricationthe magnetic characterizations were carried out in the Instruments Center for Physical Science, USTC。
文摘Y_(3)Fe_(5)O_(12)(YIG) and Bi Y_(3)Fe_(5)O_(12)(Bi:YIG) films were epitaxially grown on a series of(111)-oriented garnet substrates using pulsed laser deposition. Structural and ferromagnetic resonance characterizations demonstrated the high epitaxial quality, extremely low magnetic loss and coherent strain state in these films. Using these epitaxial films as model systems, we systematically investigated the evolution of magnetic anisotropy(MA) with epitaxial strain and chemical doping. For both the YIG and Bi:YIG films, the compressive strain tends to align the magnetic moment in the film plane while the tensile strain can compete with the demagnetization effect and stabilize perpendicular MA. We found that the strain-induced lattice elongation/compression along the out-of-plane [111] axis is the key parameter that determines the MA. More importantly, the strain-induced tunability of MA can be enhanced significantly by Bi doping;meanwhile, the ultralow damping feature persists. We clarified that the cooperation between strain and chemical doping could realize an effective control of MA in garnet-type ferrites, which is essential for spintronic applications.
文摘This paper presents numerous physical characteristics of Ca, V, Sn doped yttrium iron garnet (CaVSn:YIG) irradiated with 0.56GeV carbon ions delivered by the Heavy Ion Research Facility of Lanzhou (HIRFL). The reason for change of the magnetic properties of the samples induced by energetic carbon ions bombardment is discussed. By comparison of this results with the irradiation effects of YIG induced by energetic argon, krypton and xenon obtained on the GANIL, Caen,France, it is concluded that the irradiation effect of 0.56 GeV C6+ on CaVSn.YIG arises from the electronic energy losses.
基金Natural Science Foundation of Hubei Province of China(2018CFB178)National Natural Science Foundation of China(51801057)。
文摘The tunability of the terahertz dielectric spectra of Y3Fe5O12(YIG) ceramics under external optical field were investigated at room temperature by using terahertz time-domain spectroscopy. The Y3Fe5O12 ceramics annealed at 1 100 and 1 300 ℃ were successfully synthesized by a modified Pechini process. The samples were characterized by X-ray diffraction and no impurity phase has been detected. The crystallite sizes of the YIG ceramics are calculated to be about 50 nm for TS=1 100 ℃ and 77 nm for TS=1 300 ℃, respectively. And Scanning Electron Microscope(SEM) images show that the grain size is positively correlated with the sintering temperature. Application of the optical field leads to an appreciable tuning of the dielectric constant of the sample sintered at 1 100 ℃, which reaches up to 17.3% at 0.6 THz. Meanwhile the dielectric loss tangent of the sample sintered at 1 100 ℃ changes about 123.9%. On the contrast, both the dielectric constant and the loss tangent for the sample sintered at 1 300 ℃ keep invariable with the light excitation. These findings are attributed to space charges hopping among the grain boundaries excited by the external optical field.