Corn as one of the world's major food crops,its by-product corn cob is also rich in resources.However,the unreasonable utilization of corn cob often causes the environmental pollution,waste of resources and other ...Corn as one of the world's major food crops,its by-product corn cob is also rich in resources.However,the unreasonable utilization of corn cob often causes the environmental pollution,waste of resources and other problems.As one of the most abundant polymers in nature,xylan is widely used in food,medicine,materials and other fields.Corn cob is rich in xylan,which is an ideal raw material for extracting xylan.However,the intractable lignin is covalently linked to xylan,which increases the difficulty of xylan extraction.It has been reported that the deep eutectic solvent(DES)could preferentially dissolve lignin in biomass,thereby dissolving the xylan.Then,the xylan in the extract was separated by ethanol precipitation method.The xylan precipitate was obtained after centrifugation,while the supernatant was retained.The components of the supernatant after ethanol precipitation were separated by the rotary evaporator.The ethanol,water and DES were collected for the subsequent extraction of corn cob xylan.In this study,a novel way was provided for the green production of corn cob xylan.The DES was used to extract xylan from corn cob which was used as the raw material.The effects of solid-liquid ratio,reaction time,reaction temperature and water content of DES on the extraction rate of corn cob xylan were investigated by the single factor test.Furthermore,the orthogonal test was designed to optimize the xylan extraction process.The structure of corn cob xylan was analyzed and verified.The results showed that the optimum extraction conditions of corn cob xylan were as follows:the ratio of corn cob to DES was 1:15(g:mL),the extraction time was 3 h,the extraction temperature was 60℃,and the water content of DES was 70%.Under these conditions,the extraction rate of xylan was 16.46%.The extracted corn cob xylan was distinctive triple helix of polysaccharide,which was similar to the structure of commercially available xylan.Xylan was effectively and workably extracted from corn cob by the DES method.This study provided a new approach for high value conversion of corn cob and the clean production of xylan.展开更多
The goal of this work is to produce nanocomposite film with low oxygen permeability by casting an aqueous solution containing xylan,sorbitol and nanocrystalline cellulose.The morphology of the resulting nanocomposite ...The goal of this work is to produce nanocomposite film with low oxygen permeability by casting an aqueous solution containing xylan,sorbitol and nanocrystalline cellulose.The morphology of the resulting nanocomposite films was examined by scanning electron microscopy and atomic force microscopy which showed that control films containing xylan and sorbitol had a more open structure as compared to xylan-sorbitol films containing sulfonated nanocrystalline cellulose.The average pore diameter,bulk density,porosity and tortuosity factor measurements of control xylan films and nanocomposite xylan films were examined by mercury intrusion porosimetry techniques.Xylan films reinforced with nanocrystalline cellulose were denser and exhibited higher tortuosity factor than the control xylan films.Control xylan films had average pore diameter,bulk density,porosity and tortuosity factor of 0.1730 μm,0.6165 g/ml,53.0161% and 1.258,respectively as compared to xylan films reinforced with 50% nanocrystalline cellulose with average pore diameter of 0.0581 μm,bulk density of 1.1513 g/ml,porosity of 22.8906% and tortuosity factor of 2.005.Oxygen transmission rate tests demonstrated that films prepared with xylan,sorbitol and 5%,10%,25% and 50% sulfonated nanocrystalline cellulose exhibited a significantly reduced oxygen permeability of 1.1387,1.0933,0.8986 and 0.1799 cm^3×μm/m^2×d×k Pa respectively with respect to films prepared solely from xylan and sorbitol with a oxygen permeability of 189.1665 cm^3×μm/m^2×d×k Pa.These properties suggested these nanocomposite films have promising barrier properties.展开更多
We screened soil samples collected from underneath shrubs and/or large trees at different locations in the Eastern Ghats of Andhra Pradesh for xylanase-producing microorganisms. Xylose-utilizing bacteria were numerica...We screened soil samples collected from underneath shrubs and/or large trees at different locations in the Eastern Ghats of Andhra Pradesh for xylanase-producing microorganisms. Xylose-utilizing bacteria were numerically dominant in soils of most locations whereas xylose-and xylan-utilizing actinobacteria were minor components. Xylan-utilizing fungi constituted a major share of total microbial populations in soil samples collected at half of the sites, whereas xylan-utilizing bacteria were predominant at other sampling locations. Some of the isolates of fungi exhibited xylanase activity with a range of400–4000 U/ml, indicating great potential for their uses in paper, pulping and bioethanol industries for producing value-added products.展开更多
基金This work was supported by the National Natural Science Foundation of China[21978070]Natural Science Foundation of Henan[212300410032,232103810065]+2 种基金Key Research and Development Projects of Henan Province[221111320500]Program for Science&Technology Innovation Talents in Universities of Henan Province[20HASTIT034]Henan Province“Double First-Class”Project-Food Science and Technology.
文摘Corn as one of the world's major food crops,its by-product corn cob is also rich in resources.However,the unreasonable utilization of corn cob often causes the environmental pollution,waste of resources and other problems.As one of the most abundant polymers in nature,xylan is widely used in food,medicine,materials and other fields.Corn cob is rich in xylan,which is an ideal raw material for extracting xylan.However,the intractable lignin is covalently linked to xylan,which increases the difficulty of xylan extraction.It has been reported that the deep eutectic solvent(DES)could preferentially dissolve lignin in biomass,thereby dissolving the xylan.Then,the xylan in the extract was separated by ethanol precipitation method.The xylan precipitate was obtained after centrifugation,while the supernatant was retained.The components of the supernatant after ethanol precipitation were separated by the rotary evaporator.The ethanol,water and DES were collected for the subsequent extraction of corn cob xylan.In this study,a novel way was provided for the green production of corn cob xylan.The DES was used to extract xylan from corn cob which was used as the raw material.The effects of solid-liquid ratio,reaction time,reaction temperature and water content of DES on the extraction rate of corn cob xylan were investigated by the single factor test.Furthermore,the orthogonal test was designed to optimize the xylan extraction process.The structure of corn cob xylan was analyzed and verified.The results showed that the optimum extraction conditions of corn cob xylan were as follows:the ratio of corn cob to DES was 1:15(g:mL),the extraction time was 3 h,the extraction temperature was 60℃,and the water content of DES was 70%.Under these conditions,the extraction rate of xylan was 16.46%.The extracted corn cob xylan was distinctive triple helix of polysaccharide,which was similar to the structure of commercially available xylan.Xylan was effectively and workably extracted from corn cob by the DES method.This study provided a new approach for high value conversion of corn cob and the clean production of xylan.
基金the member companies of IPST at the Georgia Institute of Technology and the IPST Fellowship
文摘The goal of this work is to produce nanocomposite film with low oxygen permeability by casting an aqueous solution containing xylan,sorbitol and nanocrystalline cellulose.The morphology of the resulting nanocomposite films was examined by scanning electron microscopy and atomic force microscopy which showed that control films containing xylan and sorbitol had a more open structure as compared to xylan-sorbitol films containing sulfonated nanocrystalline cellulose.The average pore diameter,bulk density,porosity and tortuosity factor measurements of control xylan films and nanocomposite xylan films were examined by mercury intrusion porosimetry techniques.Xylan films reinforced with nanocrystalline cellulose were denser and exhibited higher tortuosity factor than the control xylan films.Control xylan films had average pore diameter,bulk density,porosity and tortuosity factor of 0.1730 μm,0.6165 g/ml,53.0161% and 1.258,respectively as compared to xylan films reinforced with 50% nanocrystalline cellulose with average pore diameter of 0.0581 μm,bulk density of 1.1513 g/ml,porosity of 22.8906% and tortuosity factor of 2.005.Oxygen transmission rate tests demonstrated that films prepared with xylan,sorbitol and 5%,10%,25% and 50% sulfonated nanocrystalline cellulose exhibited a significantly reduced oxygen permeability of 1.1387,1.0933,0.8986 and 0.1799 cm^3×μm/m^2×d×k Pa respectively with respect to films prepared solely from xylan and sorbitol with a oxygen permeability of 189.1665 cm^3×μm/m^2×d×k Pa.These properties suggested these nanocomposite films have promising barrier properties.
基金supported by the University Grants Commission,New Delhi,India
文摘We screened soil samples collected from underneath shrubs and/or large trees at different locations in the Eastern Ghats of Andhra Pradesh for xylanase-producing microorganisms. Xylose-utilizing bacteria were numerically dominant in soils of most locations whereas xylose-and xylan-utilizing actinobacteria were minor components. Xylan-utilizing fungi constituted a major share of total microbial populations in soil samples collected at half of the sites, whereas xylan-utilizing bacteria were predominant at other sampling locations. Some of the isolates of fungi exhibited xylanase activity with a range of400–4000 U/ml, indicating great potential for their uses in paper, pulping and bioethanol industries for producing value-added products.