This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction betwee...This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction between various structural materials and molten salts.The apparatus enables accurate detection of every phase change during hightemperature experiments,including strong reaction processes like corrosion.Molten salts,such as chlorides or fluo⁃rides,together with the structure materials,are inserted into either quartz or boron nitride capillaries,where X-ray diffraction pattern can be continuously collected,as the samples are heated to high temperature.The replacement re⁃action,when molten ZnCl2 are etching Ti3AlC2,can be clearly observed through changes in diffraction peak intensity as well as expansion in c-axis lattice parameter of the hexagonal matrix,due to the larger atomic number and ionic ra⁃dius of Zn2+.Furthermore,we investigated the high-temperature corrosion process when GH3535 alloy is in FLiNaK molten salt,and can help to optimize its stability for potential applications in molten salt reactor.Additionally,this high temperature apparatus is fully compatible with the combined usage of X-ray diffraction and Raman technique,providing both bulk and surface structural information.This high temperature apparatus has been open to users and is extensively used at BL14B1 beamline of the Shanghai Synchrotron Radiation Facility.展开更多
The ingots of Pr0.15TbxDy0.85-xFe2 (x=0.10-0.85) series compounds with a single phase were prepared -by a arc melting method. The X-ray diffraction patterns were measured using a Philips X’pert MPD X-ray diffractom...The ingots of Pr0.15TbxDy0.85-xFe2 (x=0.10-0.85) series compounds with a single phase were prepared -by a arc melting method. The X-ray diffraction patterns were measured using a Philips X’pert MPD X-ray diffractometer with a non-ambient sample stage at different temperatures, the magnetostrictive distortion in (Pr0.15TbxDy0.85-xFe2) polycrystals was investigated by X-ray diffraction patterns and the magnetostriction coefficient λ111 was calculated. The results show -when the temperature is raised above the spin reorientation temperature region, a splitting appears in the reflection (440); the λ111 increase with the increasing of Tb content for (Pr0.15TbxDy0.85-xFe2) polycrystals and the full width at half maximum (FWHM) of the reflection (440) increases gradually with the increasing of Tb content. Moreover, as the FWHM of the reflection (440) decreases gradually with the increasing of temperature, the λ111 decreases slightly with the increasing of temperature at the temperature region of 223-373K for Pr0.15Tb0.3Dy0.55Fe2 alloy.展开更多
Silicon(Si)diffraction microlens arrays are usually used to integrating with infrared focal plane arrays(IRFPAs)to improve their performance.The errors of lithography are unavoidable in the process of the Si diffrac-t...Silicon(Si)diffraction microlens arrays are usually used to integrating with infrared focal plane arrays(IRFPAs)to improve their performance.The errors of lithography are unavoidable in the process of the Si diffrac-tion microlens arrays preparation in the conventional engraving method.It has a serious impact on its performance and subsequent applications.In response to the problem of errors of Si diffraction microlens arrays in the conven-tional method,a novel self-alignment method for high precision Si diffraction microlens arrays preparation is pro-posed.The accuracy of the Si diffractive microlens arrays preparation is determined by the accuracy of the first li-thography mask in the novel self-alignment method.In the subsequent etching,the etched area will be protected by the mask layer and the sacrifice layer or the protective layer.The unprotection area is carved to effectively block the non-etching areas,accurately etch the etching area required,and solve the problem of errors.The high precision Si diffraction microlens arrays are obtained by the novel self-alignment method and the diffraction effi-ciency could reach 92.6%.After integrating with IRFPAs,the average blackbody responsity increased by 8.3%,and the average blackbody detectivity increased by 10.3%.It indicates that the Si diffraction microlens arrays can improve the filling factor and reduce crosstalk of IRFPAs through convergence,thereby improving the perfor-mance of the IRFPAs.The results are of great reference significance for improving their performance through opti-mizing the preparation level of micro nano devices.展开更多
[目的/意义]苹果“冰糖心”又称水心病,是一种常见的果实病害,严重的水心病果会随着储藏时间的增加发生霉变,造成食品安全隐患。为实现不同等级水心病苹果快速无损检测,本研究旨在构建有效的分级与可溶性固形物(Soluble Solids Content,...[目的/意义]苹果“冰糖心”又称水心病,是一种常见的果实病害,严重的水心病果会随着储藏时间的增加发生霉变,造成食品安全隐患。为实现不同等级水心病苹果快速无损检测,本研究旨在构建有效的分级与可溶性固形物(Soluble Solids Content,SSC)预测模型。[方法]本研究选取了230个富士苹果,其中正常、轻度、中度、重度水心苹果数量分别为113、61、47和9个,分别采集了400~1000 nm范围的反射光谱和X射线计算机断层成像(X-ray Computed Tomography,X-ray CT)数据,并测定了SSC含量。[结果和讨论]SSC随水心程度加剧呈上升趋势,重度水心苹果呈现更高的光谱反射率,X-ray CT扫描成像观察到水心区域的组织体积平均密度高于健康组织,基于三维重建算法实现不同等级水心苹果内部水心组织可视化分布。基于偏最小二乘判别分析(Partial Least Squares Discriminant Analysis,PLSDA)构建的不同水心程度苹果果实分级模型建模集和测试集准确率分别为98.7%和95.9%;构建不同水心程度苹果果实SSC回归模型,校正集决定系数(Correlation Coefficient of Calibration,R_(C)^(2))为0.962,均方根误差(Root Mean Squares Error of Calibration,RMSEC)为0.264,测试集决定系数(Correlation Coefficient of Prediction,R_(P)^(2))为0.879,均方根误差(Root Mean Squares Error of Prediction,RMSEP)为0.435。[结论]该研究构建的不同水心程度苹果果实分级模型能够实现苹果不同等级水心病的预测,构建的不同水心程度苹果果实SSC回归模型能够较好地预测苹果果实的SSC,为苹果水心病无损检测和品质评估提供了有效方法。展开更多
对农作物品种正确分类是作物分类学的重要内容,为考察X-ray成像技术对小麦品种分类研究的有效性,基于软X-ray成像仪采集的3品种(Kama,Rosa and Canadian)每个品种70个籽粒,共210个籽粒样本的X-ray扫描图像,并针对其7个形态几何特征(面...对农作物品种正确分类是作物分类学的重要内容,为考察X-ray成像技术对小麦品种分类研究的有效性,基于软X-ray成像仪采集的3品种(Kama,Rosa and Canadian)每个品种70个籽粒,共210个籽粒样本的X-ray扫描图像,并针对其7个形态几何特征(面积、周长、紧致度、籽粒长度、宽度、偏斜度、种子腹沟长度),提出了一种使用Kernel-ICA的方法先对特征进行优化,再进行小麦品种的聚类与识别的方法,并与K-means、C-means 2种聚类方法以及基于工神经网络(ANN)和支持向量机(SVM)2种识别方法的分类结果进行比较,结果发现:分类正确率从高到低分别为:Kernel-ICA、SVM、C-means、K-means、BP-ANN,分类正确率分别为:91.9%、90.5%、89.5%、87.1%、86.9%。研究提出的Kernel-ICA的方法,聚类优化和识别能力较强,对软X-ray成像的小麦品种进行分类,已基本上满足农艺上对小麦品种分类需要,对农作物种质资源鉴别和作物品种分类研究具有积极意义。展开更多
基金CAS Photon Science Research Center for Carbon DioxideCAS President’s International Fellowship Initiative(2024PVA0097)+1 种基金National Key Research and Development Program of China(2017YFA0403000,2017YFA0402800)National Natural Science Foundation of China(U1932201,U1732121)。
文摘This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction between various structural materials and molten salts.The apparatus enables accurate detection of every phase change during hightemperature experiments,including strong reaction processes like corrosion.Molten salts,such as chlorides or fluo⁃rides,together with the structure materials,are inserted into either quartz or boron nitride capillaries,where X-ray diffraction pattern can be continuously collected,as the samples are heated to high temperature.The replacement re⁃action,when molten ZnCl2 are etching Ti3AlC2,can be clearly observed through changes in diffraction peak intensity as well as expansion in c-axis lattice parameter of the hexagonal matrix,due to the larger atomic number and ionic ra⁃dius of Zn2+.Furthermore,we investigated the high-temperature corrosion process when GH3535 alloy is in FLiNaK molten salt,and can help to optimize its stability for potential applications in molten salt reactor.Additionally,this high temperature apparatus is fully compatible with the combined usage of X-ray diffraction and Raman technique,providing both bulk and surface structural information.This high temperature apparatus has been open to users and is extensively used at BL14B1 beamline of the Shanghai Synchrotron Radiation Facility.
基金Project(50271023) supported by the National Natural Science Foundation of China
文摘The ingots of Pr0.15TbxDy0.85-xFe2 (x=0.10-0.85) series compounds with a single phase were prepared -by a arc melting method. The X-ray diffraction patterns were measured using a Philips X’pert MPD X-ray diffractometer with a non-ambient sample stage at different temperatures, the magnetostrictive distortion in (Pr0.15TbxDy0.85-xFe2) polycrystals was investigated by X-ray diffraction patterns and the magnetostriction coefficient λ111 was calculated. The results show -when the temperature is raised above the spin reorientation temperature region, a splitting appears in the reflection (440); the λ111 increase with the increasing of Tb content for (Pr0.15TbxDy0.85-xFe2) polycrystals and the full width at half maximum (FWHM) of the reflection (440) increases gradually with the increasing of Tb content. Moreover, as the FWHM of the reflection (440) decreases gradually with the increasing of temperature, the λ111 decreases slightly with the increasing of temperature at the temperature region of 223-373K for Pr0.15Tb0.3Dy0.55Fe2 alloy.
基金Supported by the National Natural Science Foundation of China(NSFC 62105100)the National Key research and development program in the 14th five year plan(2021YFA1200700)。
文摘Silicon(Si)diffraction microlens arrays are usually used to integrating with infrared focal plane arrays(IRFPAs)to improve their performance.The errors of lithography are unavoidable in the process of the Si diffrac-tion microlens arrays preparation in the conventional engraving method.It has a serious impact on its performance and subsequent applications.In response to the problem of errors of Si diffraction microlens arrays in the conven-tional method,a novel self-alignment method for high precision Si diffraction microlens arrays preparation is pro-posed.The accuracy of the Si diffractive microlens arrays preparation is determined by the accuracy of the first li-thography mask in the novel self-alignment method.In the subsequent etching,the etched area will be protected by the mask layer and the sacrifice layer or the protective layer.The unprotection area is carved to effectively block the non-etching areas,accurately etch the etching area required,and solve the problem of errors.The high precision Si diffraction microlens arrays are obtained by the novel self-alignment method and the diffraction effi-ciency could reach 92.6%.After integrating with IRFPAs,the average blackbody responsity increased by 8.3%,and the average blackbody detectivity increased by 10.3%.It indicates that the Si diffraction microlens arrays can improve the filling factor and reduce crosstalk of IRFPAs through convergence,thereby improving the perfor-mance of the IRFPAs.The results are of great reference significance for improving their performance through opti-mizing the preparation level of micro nano devices.
文摘[目的/意义]苹果“冰糖心”又称水心病,是一种常见的果实病害,严重的水心病果会随着储藏时间的增加发生霉变,造成食品安全隐患。为实现不同等级水心病苹果快速无损检测,本研究旨在构建有效的分级与可溶性固形物(Soluble Solids Content,SSC)预测模型。[方法]本研究选取了230个富士苹果,其中正常、轻度、中度、重度水心苹果数量分别为113、61、47和9个,分别采集了400~1000 nm范围的反射光谱和X射线计算机断层成像(X-ray Computed Tomography,X-ray CT)数据,并测定了SSC含量。[结果和讨论]SSC随水心程度加剧呈上升趋势,重度水心苹果呈现更高的光谱反射率,X-ray CT扫描成像观察到水心区域的组织体积平均密度高于健康组织,基于三维重建算法实现不同等级水心苹果内部水心组织可视化分布。基于偏最小二乘判别分析(Partial Least Squares Discriminant Analysis,PLSDA)构建的不同水心程度苹果果实分级模型建模集和测试集准确率分别为98.7%和95.9%;构建不同水心程度苹果果实SSC回归模型,校正集决定系数(Correlation Coefficient of Calibration,R_(C)^(2))为0.962,均方根误差(Root Mean Squares Error of Calibration,RMSEC)为0.264,测试集决定系数(Correlation Coefficient of Prediction,R_(P)^(2))为0.879,均方根误差(Root Mean Squares Error of Prediction,RMSEP)为0.435。[结论]该研究构建的不同水心程度苹果果实分级模型能够实现苹果不同等级水心病的预测,构建的不同水心程度苹果果实SSC回归模型能够较好地预测苹果果实的SSC,为苹果水心病无损检测和品质评估提供了有效方法。
文摘对农作物品种正确分类是作物分类学的重要内容,为考察X-ray成像技术对小麦品种分类研究的有效性,基于软X-ray成像仪采集的3品种(Kama,Rosa and Canadian)每个品种70个籽粒,共210个籽粒样本的X-ray扫描图像,并针对其7个形态几何特征(面积、周长、紧致度、籽粒长度、宽度、偏斜度、种子腹沟长度),提出了一种使用Kernel-ICA的方法先对特征进行优化,再进行小麦品种的聚类与识别的方法,并与K-means、C-means 2种聚类方法以及基于工神经网络(ANN)和支持向量机(SVM)2种识别方法的分类结果进行比较,结果发现:分类正确率从高到低分别为:Kernel-ICA、SVM、C-means、K-means、BP-ANN,分类正确率分别为:91.9%、90.5%、89.5%、87.1%、86.9%。研究提出的Kernel-ICA的方法,聚类优化和识别能力较强,对软X-ray成像的小麦品种进行分类,已基本上满足农艺上对小麦品种分类需要,对农作物种质资源鉴别和作物品种分类研究具有积极意义。