The effect of maleic anhydride grafted styrene-ethylene- buty-lene-styrene block copolymer (SEBS-g-MAH) and in-situ grafting MAH on mechanical, dynamic mechanical properties of wood flour/recycled plastic blends com...The effect of maleic anhydride grafted styrene-ethylene- buty-lene-styrene block copolymer (SEBS-g-MAH) and in-situ grafting MAH on mechanical, dynamic mechanical properties of wood flour/recycled plastic blends composites was investigated. Recycled plastic polypro-pylene (PP), high-density polyethylene (HDPE) and polystyrene (PS), were mixed with wood flour in a high speed blender and then extruded by a twin/single screw tandem extruder system to form wood flour/recycled plastic blends composites. Results show that the impact properties of the composites were improved more significantly by using SEBS-g-MAH compatibilizer than by using the mixtures of MAH and DCP via reactive blending in situ. However, contrary results were ob-served on the tensile and flexural properties of the corresponding com-posites. In General, the mechanical properties of composites made from recycled plastic blends were inferior to those made from virgin plastic blends, especially in elongation break. The morphological study verified that the interfacial adhesion or the compatibility of plastic blends with wood flour was improved by adding SEBS-g-MAH or in-situ grafting MAH. A better interfacial bonding between PP, HDPE, PS and wood flour was obtained by in-situ grafting MAH than the addition of SEBS-g-MAH. In-situ grafting MAH can be considered as a potential way of increasing the interfacial compatibility between plastic blends and wood flour. The storage modulus and damping factor of composites were also characterized through dynamic mechanical analysis (DMA).展开更多
We produced wood–plastic composite board by using sawmill wastage of mahogany(Swietenia macrophylla) wood and low density polyethylene.We used multi-response optimization to optimize the process parameters of compo...We produced wood–plastic composite board by using sawmill wastage of mahogany(Swietenia macrophylla) wood and low density polyethylene.We used multi-response optimization to optimize the process parameters of composite board production including mixing ratio,fire retardant(%) and pressing time(min).We investigated the effects of these three process parameters in the mechanical and physical properties of the composite board.Afterwards,Box–Behnken design was performed as response surface methodology with desirability functions to attain the optimal level of mixing ratio,fire retardant and pressing time(min).The maximum modulus of elasticity(MOE) and modulus of rupture(MOR) were achieved at the optimal conditions of wood plastic mixing ratio of60:40,pressing time of 9 min and zero fire retardant percentage.The optimized MOR and MOE were 13.12 and1,781.0 N mm-2,respectively.展开更多
As a hot-melt adhesive, ethylene-vinyl-acetate (EVA) has been used in many industrial applications. But studies of the application of EVA in wood-plastic composites (WPC) are relatively few, so we have investigate...As a hot-melt adhesive, ethylene-vinyl-acetate (EVA) has been used in many industrial applications. But studies of the application of EVA in wood-plastic composites (WPC) are relatively few, so we have investigated the proposition of whether EVA is a suitable coupling agent for WPC or not. The results show that EVA with 8% VA is not a suitable coupling agent, because it reduces the mechanical properties of WPC without any significant effect on its physical properties. With an increase in the amount of wood powder, the mechanical properties of WPC decrease and the ability of water absorption of WPC increases.展开更多
The mechanical properties of composites prepared from wood flour and thermoplastic blends were investigated. Thermoplastic mixtures of polypropylene (PP) and high-density polyethylene (HDPE) and polystyrene (PS), virg...The mechanical properties of composites prepared from wood flour and thermoplastic blends were investigated. Thermoplastic mixtures of polypropylene (PP) and high-density polyethylene (HDPE) and polystyrene (PS), virgin or recycled, were mixed with wood flour in a high speed blender and then extruded by a specially designed twin/single screw extruder system to form wood-flour/thermoplastic-blends composites (WTBCs). Comparative studies were made to evaluate the effectiveness of the two modification methods of the thermoplastic blends, the one of the addition of maleic anhydride grafted styrene-ethylene-butylene-styrene block copolymer (SEBS-g-MAH) as compatibilizer and the other of blend grafting of maleic anhydride (MAH) using dicumyl peroxide (DCP) as initiator by reactive extrusion. The results showed that the impact properties of WTBCs using SEBS-g-MAH as compatilizer were better improved than that of the blend grafting. However, adverse results were observed on the tensile and flexural properties of the corresponding WTBCs. The mechanical properties of WTBCs prepared from recycled plastic blends were poorer to some extent than that from virgin plastic blends in general, especially in elongation break. The morphology of WTBCs breaking section was analyzed by scanning electron microscopy (SEM) and the results showed that a good interfacial adhesion between wood flour and polymer matrix was observed with both of the two modification methods. However, by blend grafting of adding DCP as initiator and MAH as monomer, a better interfacial bonding between wood and plastic matrix was obtained than that of the addition of SEBS-g-MAH. Blend grafting can be considered as a potential way of increasing the interfacial compatibility of different plastics and between plastic blends and wood.展开更多
The chemical composition of unpleasant smell, emitted from the production process of wood-plastic composites using Manchurian ash sawdust (Fraxinus mandschurica Rupr.) and polypropylene powder as the raw material, w...The chemical composition of unpleasant smell, emitted from the production process of wood-plastic composites using Manchurian ash sawdust (Fraxinus mandschurica Rupr.) and polypropylene powder as the raw material, was investigated. Wood sawdust and polypropylene powder were subjected to heat treatment to 290℃ during 8 min (the conditions were similar to those employed on an industrial scale). The emitted compounds were collected and analyzed by gas chromatography-mass spectrometry (GC-MS). The analytical results showed that the unpleasant smell was emitted from the pyrogenation of wood sawdust rather than from the polypropylene powder. Nine types of compounds (hydrocarbons, ethers, phenols, aldehydes, ketones, alcohols, acids and their derivatives, furan and its derivatives, and nitrogen-containing compounds) were collected in the gas phase during heating. Among those 126 components detected by GC-MS, 112 compounds were identified.展开更多
Viscoelastic properties of maleated polypropylene (MAPP)-modified wood flour/polypropylene composites (WPC) were investigated by both a compression stress relaxation method and dynamic mechanical analyses (DMA)....Viscoelastic properties of maleated polypropylene (MAPP)-modified wood flour/polypropylene composites (WPC) were investigated by both a compression stress relaxation method and dynamic mechanical analyses (DMA). Three wood to polymer ratios (40:60, 60:40, and 80:20) and five MAPP loading levels (0, 1, 2, 4 and 8%) were used to study their effects on the viscoelastic prop- erties of MAPP-WPC. The results show that: 1) higher wood to polymer ratio corresponds to higher stress relaxation levels for unmodified WPC. The modification with MAPP has an obvious effect on the stress relaxation of MAPP-WPC at higher wood to polymer ratios (60:40 and 80:20), but almost no effect at the 40:60 wood to polymer ratio. The optimal MAPP loading level for the wood to polymer ratio of 60:40 appears at 1%; 2) the storage modulus reaches its maximum at a MAPP loading level of 1% for wood to polymer ratios of 40:60 and 60:40, while for the 80:20 wood to polymer ratio, a higher storage modulus is observed at higher MAPP loading levels, which is quite consistent with the stress relaxation results. The results suggested that a suitable loading level of MAPP has a positive effect on the viscoelastic properties of WPC at higher wood to polymer ratios. Excessive MAPP loading would have resulted in adverse effects.展开更多
Flax fiber(FF) was used to reinforce wood flour/high density polyethylene composites(WF/PE).WF/PE particles were uniformly mixed with FF via high-speed mixing and then extruded with a single screw extruder to prepare ...Flax fiber(FF) was used to reinforce wood flour/high density polyethylene composites(WF/PE).WF/PE particles were uniformly mixed with FF via high-speed mixing and then extruded with a single screw extruder to prepare FF reinforced WF/PE composites(FF/WF/PE).Mechanical testing,dynamic mechanical analysis,scanning electron microscopy(SEM),creep measurement and Torque rheology were used to characterize the resulting composites.The results indicate that the mechanical performance of the composites could be remarkably improved by adding a limited amount of FF.The flexural strength and modulus increased by 14.6 and 51.4%,respectively(FF content of 9 wt%),while the unnotched impact strength could be increased by 26.5%(FF content of12 wt%).The creep resistance and toughness of thecomposite was markedly improved without changing the plastic content of the composite material.展开更多
Wood plastic composite (WPC) of wood flour (WF), high density polyethylene (HDPE), maleic anhydride-grafted polyethylene (MAPE) and lubricant was prepared by extrusion, and then exposed to different temperatur...Wood plastic composite (WPC) of wood flour (WF), high density polyethylene (HDPE), maleic anhydride-grafted polyethylene (MAPE) and lubricant was prepared by extrusion, and then exposed to different temperatures to evaluate the effects of freezing and thermal treatment on its dimensional and mechanical properties. At elevated temperatures, WPC expanded rapidly initially, and then contracted slowly until reaching an equilibrium state. Treatment at 52°C and relative humidity of 50% for 16 days improved the mechanical properties of WPC: flexure, tensile strength, and izod unnotched impact strength increased by 8%, 10% and 15%, respectively. Wide-angle X-ray diffraction (XRD) tests showed that the degree of crystalization of HDPE in WPC declined with increasing treatment temperature.展开更多
基金supported by the National High Technology Research and Development Program of China(2010AA101703)the Natural Science Foundation of Heilongjiang Province of China (C200950)the Fundamental Research Fundsfor the Central Universities (DL09BB38)
文摘The effect of maleic anhydride grafted styrene-ethylene- buty-lene-styrene block copolymer (SEBS-g-MAH) and in-situ grafting MAH on mechanical, dynamic mechanical properties of wood flour/recycled plastic blends composites was investigated. Recycled plastic polypro-pylene (PP), high-density polyethylene (HDPE) and polystyrene (PS), were mixed with wood flour in a high speed blender and then extruded by a twin/single screw tandem extruder system to form wood flour/recycled plastic blends composites. Results show that the impact properties of the composites were improved more significantly by using SEBS-g-MAH compatibilizer than by using the mixtures of MAH and DCP via reactive blending in situ. However, contrary results were ob-served on the tensile and flexural properties of the corresponding com-posites. In General, the mechanical properties of composites made from recycled plastic blends were inferior to those made from virgin plastic blends, especially in elongation break. The morphological study verified that the interfacial adhesion or the compatibility of plastic blends with wood flour was improved by adding SEBS-g-MAH or in-situ grafting MAH. A better interfacial bonding between PP, HDPE, PS and wood flour was obtained by in-situ grafting MAH than the addition of SEBS-g-MAH. In-situ grafting MAH can be considered as a potential way of increasing the interfacial compatibility between plastic blends and wood flour. The storage modulus and damping factor of composites were also characterized through dynamic mechanical analysis (DMA).
文摘We produced wood–plastic composite board by using sawmill wastage of mahogany(Swietenia macrophylla) wood and low density polyethylene.We used multi-response optimization to optimize the process parameters of composite board production including mixing ratio,fire retardant(%) and pressing time(min).We investigated the effects of these three process parameters in the mechanical and physical properties of the composite board.Afterwards,Box–Behnken design was performed as response surface methodology with desirability functions to attain the optimal level of mixing ratio,fire retardant and pressing time(min).The maximum modulus of elasticity(MOE) and modulus of rupture(MOR) were achieved at the optimal conditions of wood plastic mixing ratio of60:40,pressing time of 9 min and zero fire retardant percentage.The optimized MOR and MOE were 13.12 and1,781.0 N mm-2,respectively.
文摘As a hot-melt adhesive, ethylene-vinyl-acetate (EVA) has been used in many industrial applications. But studies of the application of EVA in wood-plastic composites (WPC) are relatively few, so we have investigated the proposition of whether EVA is a suitable coupling agent for WPC or not. The results show that EVA with 8% VA is not a suitable coupling agent, because it reduces the mechanical properties of WPC without any significant effect on its physical properties. With an increase in the amount of wood powder, the mechanical properties of WPC decrease and the ability of water absorption of WPC increases.
文摘The mechanical properties of composites prepared from wood flour and thermoplastic blends were investigated. Thermoplastic mixtures of polypropylene (PP) and high-density polyethylene (HDPE) and polystyrene (PS), virgin or recycled, were mixed with wood flour in a high speed blender and then extruded by a specially designed twin/single screw extruder system to form wood-flour/thermoplastic-blends composites (WTBCs). Comparative studies were made to evaluate the effectiveness of the two modification methods of the thermoplastic blends, the one of the addition of maleic anhydride grafted styrene-ethylene-butylene-styrene block copolymer (SEBS-g-MAH) as compatibilizer and the other of blend grafting of maleic anhydride (MAH) using dicumyl peroxide (DCP) as initiator by reactive extrusion. The results showed that the impact properties of WTBCs using SEBS-g-MAH as compatilizer were better improved than that of the blend grafting. However, adverse results were observed on the tensile and flexural properties of the corresponding WTBCs. The mechanical properties of WTBCs prepared from recycled plastic blends were poorer to some extent than that from virgin plastic blends in general, especially in elongation break. The morphology of WTBCs breaking section was analyzed by scanning electron microscopy (SEM) and the results showed that a good interfacial adhesion between wood flour and polymer matrix was observed with both of the two modification methods. However, by blend grafting of adding DCP as initiator and MAH as monomer, a better interfacial bonding between wood and plastic matrix was obtained than that of the addition of SEBS-g-MAH. Blend grafting can be considered as a potential way of increasing the interfacial compatibility of different plastics and between plastic blends and wood.
文摘The chemical composition of unpleasant smell, emitted from the production process of wood-plastic composites using Manchurian ash sawdust (Fraxinus mandschurica Rupr.) and polypropylene powder as the raw material, was investigated. Wood sawdust and polypropylene powder were subjected to heat treatment to 290℃ during 8 min (the conditions were similar to those employed on an industrial scale). The emitted compounds were collected and analyzed by gas chromatography-mass spectrometry (GC-MS). The analytical results showed that the unpleasant smell was emitted from the pyrogenation of wood sawdust rather than from the polypropylene powder. Nine types of compounds (hydrocarbons, ethers, phenols, aldehydes, ketones, alcohols, acids and their derivatives, furan and its derivatives, and nitrogen-containing compounds) were collected in the gas phase during heating. Among those 126 components detected by GC-MS, 112 compounds were identified.
基金supported by the National Natural Science Foundation of China (Grant No. 30871966)
文摘Viscoelastic properties of maleated polypropylene (MAPP)-modified wood flour/polypropylene composites (WPC) were investigated by both a compression stress relaxation method and dynamic mechanical analyses (DMA). Three wood to polymer ratios (40:60, 60:40, and 80:20) and five MAPP loading levels (0, 1, 2, 4 and 8%) were used to study their effects on the viscoelastic prop- erties of MAPP-WPC. The results show that: 1) higher wood to polymer ratio corresponds to higher stress relaxation levels for unmodified WPC. The modification with MAPP has an obvious effect on the stress relaxation of MAPP-WPC at higher wood to polymer ratios (60:40 and 80:20), but almost no effect at the 40:60 wood to polymer ratio. The optimal MAPP loading level for the wood to polymer ratio of 60:40 appears at 1%; 2) the storage modulus reaches its maximum at a MAPP loading level of 1% for wood to polymer ratios of 40:60 and 60:40, while for the 80:20 wood to polymer ratio, a higher storage modulus is observed at higher MAPP loading levels, which is quite consistent with the stress relaxation results. The results suggested that a suitable loading level of MAPP has a positive effect on the viscoelastic properties of WPC at higher wood to polymer ratios. Excessive MAPP loading would have resulted in adverse effects.
基金supported by the Natural Science Foundation of China(Grant No.31600459)the Natural Science Foundation of Heilongjiang Province of China(Grant No.C2016001)
文摘Flax fiber(FF) was used to reinforce wood flour/high density polyethylene composites(WF/PE).WF/PE particles were uniformly mixed with FF via high-speed mixing and then extruded with a single screw extruder to prepare FF reinforced WF/PE composites(FF/WF/PE).Mechanical testing,dynamic mechanical analysis,scanning electron microscopy(SEM),creep measurement and Torque rheology were used to characterize the resulting composites.The results indicate that the mechanical performance of the composites could be remarkably improved by adding a limited amount of FF.The flexural strength and modulus increased by 14.6 and 51.4%,respectively(FF content of 9 wt%),while the unnotched impact strength could be increased by 26.5%(FF content of12 wt%).The creep resistance and toughness of thecomposite was markedly improved without changing the plastic content of the composite material.
基金support by the Chinese Science and Technology Support Program (Project No. 2012BAD32B04)the Fundamental Research Funds for the Central Universities(DL11BB37)
文摘Wood plastic composite (WPC) of wood flour (WF), high density polyethylene (HDPE), maleic anhydride-grafted polyethylene (MAPE) and lubricant was prepared by extrusion, and then exposed to different temperatures to evaluate the effects of freezing and thermal treatment on its dimensional and mechanical properties. At elevated temperatures, WPC expanded rapidly initially, and then contracted slowly until reaching an equilibrium state. Treatment at 52°C and relative humidity of 50% for 16 days improved the mechanical properties of WPC: flexure, tensile strength, and izod unnotched impact strength increased by 8%, 10% and 15%, respectively. Wide-angle X-ray diffraction (XRD) tests showed that the degree of crystalization of HDPE in WPC declined with increasing treatment temperature.