A radiation hard phase-locked loop (PLL) is designed at 2.5 GHz using silicon on sapphire complementary metal-oxide-semiconductor process. Radiation hardness is achieved through improving circuit design without sacr...A radiation hard phase-locked loop (PLL) is designed at 2.5 GHz using silicon on sapphire complementary metal-oxide-semiconductor process. Radiation hardness is achieved through improving circuit design without sacrificing real estate. Stability is guaranteed by a fully self-bias architecture. The lock time of PLL is minimized by maximizing the loop bandwidth. Frequency tuning range of voltage controlled oscillator is significantly enhanced by a novel load configuration. In addition, multiple bias stages, asynchronous frequency divider, and silicon on sapphire process jointly make the proposed PLL more radiation hard. Layout of this PLL is simulated by Cadence Spectre RF under both single event effect and total induced dose effect. Simulation results demonstrate excellent stability, lock time 〈 600 ns, frequency tuning range [1.57 GHz, 3.46 GHz], and jitter 〈 12 ps. Through comparison with PLLs in literatures, the PLL is especially superior in terms of lock time and frequency tuning range performances.展开更多
电网同步锁相是光伏跟网型并网系统稳定可靠运行的关键技术之一。高比例新能源场景下,电网面临着电压扰动、电压不平衡、谐波畸变及直流偏置等诸多问题。为此,提出一种基于同步参考坐标系锁相环和环前型滑动平均滤波结构(pre-loop movin...电网同步锁相是光伏跟网型并网系统稳定可靠运行的关键技术之一。高比例新能源场景下,电网面临着电压扰动、电压不平衡、谐波畸变及直流偏置等诸多问题。为此,提出一种基于同步参考坐标系锁相环和环前型滑动平均滤波结构(pre-loop moving average filter,PMAF)的新型锁相环。该锁相环采用相位补偿方法校正频率偏移时的锁相误差。同时,考虑PMAF的相频耦合特性,设计了一种角频率补偿方法以提高锁相环的动态性能,建立其小信号模型并进行稳定性分析。接着设计了一种故障检测模块,实现两种补偿支路的投入和切除以适应不同工况。仿真验证了该新型锁相环在相位跳变、频率偏移、电压畸变等复杂电网条件下的有效性。最后,在高比例新能源电网中进行了新型锁相环的暂态性能测试。结果表明该锁相环能快速锁定电网电压相位,避免电压电流的振荡发散,有利于系统在故障后快速平稳地恢复。展开更多
文摘A radiation hard phase-locked loop (PLL) is designed at 2.5 GHz using silicon on sapphire complementary metal-oxide-semiconductor process. Radiation hardness is achieved through improving circuit design without sacrificing real estate. Stability is guaranteed by a fully self-bias architecture. The lock time of PLL is minimized by maximizing the loop bandwidth. Frequency tuning range of voltage controlled oscillator is significantly enhanced by a novel load configuration. In addition, multiple bias stages, asynchronous frequency divider, and silicon on sapphire process jointly make the proposed PLL more radiation hard. Layout of this PLL is simulated by Cadence Spectre RF under both single event effect and total induced dose effect. Simulation results demonstrate excellent stability, lock time 〈 600 ns, frequency tuning range [1.57 GHz, 3.46 GHz], and jitter 〈 12 ps. Through comparison with PLLs in literatures, the PLL is especially superior in terms of lock time and frequency tuning range performances.
文摘电网同步锁相是光伏跟网型并网系统稳定可靠运行的关键技术之一。高比例新能源场景下,电网面临着电压扰动、电压不平衡、谐波畸变及直流偏置等诸多问题。为此,提出一种基于同步参考坐标系锁相环和环前型滑动平均滤波结构(pre-loop moving average filter,PMAF)的新型锁相环。该锁相环采用相位补偿方法校正频率偏移时的锁相误差。同时,考虑PMAF的相频耦合特性,设计了一种角频率补偿方法以提高锁相环的动态性能,建立其小信号模型并进行稳定性分析。接着设计了一种故障检测模块,实现两种补偿支路的投入和切除以适应不同工况。仿真验证了该新型锁相环在相位跳变、频率偏移、电压畸变等复杂电网条件下的有效性。最后,在高比例新能源电网中进行了新型锁相环的暂态性能测试。结果表明该锁相环能快速锁定电网电压相位,避免电压电流的振荡发散,有利于系统在故障后快速平稳地恢复。