期刊文献+
共找到1,614篇文章
< 1 2 81 >
每页显示 20 50 100
Stackelberg Game for Wireless Powered and Backscattering Enabled Sensor Networks
1
作者 Lyu Bin Cao Yi +2 位作者 Wang Shuai Guo Haiyan Hao Chengyao 《China Communications》 SCIE CSCD 2024年第3期189-204,共16页
This paper investigates a wireless powered and backscattering enabled sensor network based on the non-linear energy harvesting model, where the power beacon(PB) delivers energy signals to wireless sensors to enable th... This paper investigates a wireless powered and backscattering enabled sensor network based on the non-linear energy harvesting model, where the power beacon(PB) delivers energy signals to wireless sensors to enable their passive backscattering and active transmission to the access point(AP). We propose an efficient time scheduling scheme for network performance enhancement, based on which each sensor can always harvest energy from the PB over the entire block except its time slots allocated for passive and active information delivery. Considering the PB and wireless sensors are from two selfish service providers, we use the Stackelberg game to model the energy interaction among them. To address the non-convexity of the leader-level problem, we propose to decompose the original problem into two subproblems and solve them iteratively in an alternating manner. Specifically, the successive convex approximation, semi-definite relaxation(SDR) and variable substitution techniques are applied to find a nearoptimal solution. To evaluate the performance loss caused by the interaction between two providers, we further investigate the social welfare maximization problem. Numerical results demonstrate that compared to the benchmark schemes, the proposed scheme can achieve up to 35.4% and 38.7% utility gain for the leader and the follower, respectively. 展开更多
关键词 backscatter communication energy interaction stackelberg game wireless powered sensor network
在线阅读 下载PDF
Intelligent UAV Based Energy Supply for 6G Wireless Powered IoT Networks
2
作者 Miao Jiansong Chen Haoqiang +4 位作者 Wang Pengjie Li Hairui Zhao Yan Mu Junsheng Yan Shi 《China Communications》 SCIE CSCD 2024年第9期321-337,共17页
In this paper,we develop a 6G wireless powered Internet of Things(IoT)system assisted by unmanned aerial vehicles(UAVs)to intelligently supply energy and collect data at the same time.In our dual-UAV scheme,UAV-E,with... In this paper,we develop a 6G wireless powered Internet of Things(IoT)system assisted by unmanned aerial vehicles(UAVs)to intelligently supply energy and collect data at the same time.In our dual-UAV scheme,UAV-E,with a constant power supply,transmits energy to charge the IoT devices on the ground,whereas UAV-B serves the IoT devices by data collection as a base station.In this framework,the system's energy efficiency is maximized,which we define as a ratio of the sum rate of IoT devices to the energy consumption of two UAVs during a fixed working duration.With the constraints of duration,transmit power,energy,and mobility,a difficult non-convex issue is presented by optimizing the trajectory,time duration allocation,and uplink transmit power of concurrently.To tackle the non-convex fractional optimization issue,we deconstruct it into three subproblems and we solve each of them iteratively using the descent method in conjunction with sequential convex approximation(SCA)approaches and the Dinkelbach algorithm.The simulation findings indicate that the suggested cooperative design has the potential to greatly increase the energy efficiency of the 6G intelligent UAV-assisted wireless powered IoT system when compared to previous benchmark systems. 展开更多
关键词 6G wireless powered network energy efficiency IoT intelligent network UAV communication
在线阅读 下载PDF
Efficient and stable wireless power transfer based on the non-Hermitian physics 被引量:5
3
作者 Chao Zeng Zhiwei Guo +8 位作者 Kejia Zhu Caifu Fan Guo Li Jun Jiang Yunhui Li Haitao Jiang Yaping Yang Yong Sun Hong Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第1期37-44,共8页
As one of the most attractive non-radiative power transfer mechanisms without cables,efficient magnetic resonance wireless power transfer(WPT)in the near field has been extensively developed in recent years,and promot... As one of the most attractive non-radiative power transfer mechanisms without cables,efficient magnetic resonance wireless power transfer(WPT)in the near field has been extensively developed in recent years,and promoted a variety of practical applications,such as mobile phones,medical implant devices and electric vehicles.However,the physical mechanism behind some key limitations of the resonance WPT,such as frequency splitting and size-dependent efficiency,is not very clear under the widely used circuit model.Here,we review the recently developed efficient and stable resonance WPT based on non-Hermitian physics,which starts from a completely different avenue(utilizing loss and gain)to introduce novel functionalities to the resonance WPT.From the perspective of non-Hermitian photonics,the coherent and incoherent effects compete and coexist in the WPT system,and the weak stable of energy transfer mainly comes from the broken phase associated with the phase transition of parity-time symmetry.Based on this basic physical framework,some optimization schemes are proposed,including using nonlinear effect,using bound states in the continuum,or resorting to the system with high-order parity-time symmetry.Moreover,the combination of non-Hermitian physics and topological photonics in multi-coil system also provides a versatile platform for long-range robust WPT with topological protection.Therefore,the non-Hermitian physics can not only exactly predict the main results of current WPT systems,but also provide new ways to solve the difficulties of previous designs. 展开更多
关键词 wireless power transfer non-Hermitian physics topological edge states
在线阅读 下载PDF
Online Computation Offloading and Trajectory Scheduling for UAV-Enabled Wireless Powered Mobile Edge Computing 被引量:4
4
作者 Han Hu Xiang Zhou +1 位作者 Qun Wang Rose Qingyang Hu 《China Communications》 SCIE CSCD 2022年第4期257-273,共17页
The unmanned aerial vehicle(UAV)-enabled mobile edge computing(MEC) architecture is expected to be a powerful technique to facilitate 5 G and beyond ubiquitous wireless connectivity and diverse vertical applications a... The unmanned aerial vehicle(UAV)-enabled mobile edge computing(MEC) architecture is expected to be a powerful technique to facilitate 5 G and beyond ubiquitous wireless connectivity and diverse vertical applications and services, anytime and anywhere. Wireless power transfer(WPT) is another promising technology to prolong the operation time of low-power wireless devices in the era of Internet of Things(IoT). However, the integration of WPT and UAV-enabled MEC systems is far from being well studied, especially in dynamic environments. In order to tackle this issue, this paper aims to investigate the stochastic computation offloading and trajectory scheduling for the UAV-enabled wireless powered MEC system. A UAV offers both RF wireless power transmission and computation services for IoT devices. Considering the stochastic task arrivals and random channel conditions, a long-term average energyefficiency(EE) minimization problem is formulated.Due to non-convexity and the time domain coupling of the variables in the formulated problem, a lowcomplexity online computation offloading and trajectory scheduling algorithm(OCOTSA) is proposed by exploiting Lyapunov optimization. Simulation results verify that there exists a balance between EE and the service delay, and demonstrate that the system EE performance obtained by the proposed scheme outperforms other benchmark schemes. 展开更多
关键词 energy efficiency mobile edge computing UAV-enabled wireless power transfer trajectorys cheduling
在线阅读 下载PDF
RIS-Aided Constant-Envelope Beamforming for Multiuser Wireless Power Transfer:A Max-Min Approach 被引量:3
5
作者 Huiyuan Yang Chang Cai +1 位作者 Xiaojun Yuan Yingchang Liang 《China Communications》 SCIE CSCD 2021年第3期80-90,共11页
As a revolutionary hardware technology that can reconfigure the propagation environment,reconfigurable intelligent surfaces(RISs)have been regarded as a promising solution to enhance wireless networks.In this paper,we... As a revolutionary hardware technology that can reconfigure the propagation environment,reconfigurable intelligent surfaces(RISs)have been regarded as a promising solution to enhance wireless networks.In this paper,we consider a multiuser multiple-input single-output(MISO)wireless power transfer(WPT)system,which is assisted by several RISs.In order to improve energy efficiency and reduce hardware cost,we consider that the energy transmitter(ET)in the WPT system is equipped with a constant-envelope analog beamformer,instead of a digital beamformer.Focusing on user fairness,we study a minimum received power maximization problem by jointly optimizing the ET beamforming and the RIS phase shifts,subject to the constant-envelope constraints.We iteratively solve this non-convex maxmin problem by leveraging both the successive convex approximation(SCA)method and the alternating direction method of multipliers(ADMM)algorithm.Numerical results demonstrate the effectiveness of the proposed algorithm and show attractive performance gain brought by RISs. 展开更多
关键词 reconfigurable intelligent surface wireless power transfer max-min fairness constantenvelope beamforming
在线阅读 下载PDF
NOMA Empowered Energy Efficient Data Collection and Wireless Power Transfer in Space-Air-Ground Integrated Networks 被引量:2
6
作者 Cong Zhou Shuo Shi +1 位作者 Chenyu Wu Zhenyu Xu 《China Communications》 SCIE CSCD 2023年第8期17-31,共15页
As the sixth generation network(6G)emerges,the Internet of remote things(IoRT)has become a critical issue.However,conventional terrestrial networks cannot meet the delay-sensitive data collection needs of IoRT network... As the sixth generation network(6G)emerges,the Internet of remote things(IoRT)has become a critical issue.However,conventional terrestrial networks cannot meet the delay-sensitive data collection needs of IoRT networks,and the Space-Air-Ground integrated network(SAGIN)holds promise.We propose a novel setup that integrates non-orthogonal multiple access(NOMA)and wireless power transfer(WPT)to collect latency-sensitive data from IoRT networks.To extend the lifetime of devices,we aim to minimize the maximum energy consumption among all IoRT devices.Due to the coupling between variables,the resulting problem is non-convex.We first decouple the variables and split the original problem into four subproblems.Then,we propose an iterative algorithm to solve the corresponding subproblems based on successive convex approximation(SCA)techniques and slack variables.Finally,simulation results show that the NOMA strategy has a tremendous advantage over the OMA scheme in terms of network lifetime and energy efficiency,providing valuable insights. 展开更多
关键词 NOMA Space-Air-Ground Integrated Networks data collection wireless power transfer resource allocation trajectory optimization
在线阅读 下载PDF
Spectrum Efficiency Maximization for Cooperative Power Beacon-Enabled Wireless Powered Communication Networks 被引量:1
7
作者 Wenjun Xu Wei Chen +2 位作者 Yongjian Fan Zhi Zhang Xinxin Shi 《China Communications》 SCIE CSCD 2021年第12期230-251,共22页
We consider a spectrum efficiency(SE)maximization problem for cooperative power beacon-enabled wireless powered communication networks(CPB-WPCNs),where each transmitter harvests en-ergy from multi-antenna power beacon... We consider a spectrum efficiency(SE)maximization problem for cooperative power beacon-enabled wireless powered communication networks(CPB-WPCNs),where each transmitter harvests en-ergy from multi-antenna power beacons(PBs)and transmits data to the corresponding receiver.For data transmission,both orthogonal transmission,i.e.,the time splitting(TS)mode,and non-orthogonal trans-mission,i.e.,the interference channel(IC)mode,are considered.Aiming to improve the system SE,the energy beamformers of PBs,the transmit power,and the transmit time duration of transmitters are jointly optimized.For the TS mode,the original non-convex problem is transformed into a convex opti-mization problem by means of variable substitution and semidefinite relaxation(SDR).The rank-one na-ture of this SDR is proved,and then a Lagrange-dual based fast algorithm is proposed to obtain the opti-mal solution with much lower complexity.For the IC mode,to conquer the strong non-convexity of the problem,a branch-reduce-and-bound(BRB)mono-tonic optimization algorithm is designed as a bench-mark.Furthermore,a low-complexity distributed suc-cessive convex approximation(SCA)algorithm is pre-sented.Finally,simulation results validate the perfor-mance of the proposed algorithms,achieving optimal-ity within only 1%∼2%computation time compared to the CVX solver in the TS mode and achieving 98%of the optimal performance in the IC mode. 展开更多
关键词 spectrum efficiency power beacon WPCN time splitting interference channel wireless power transfer
在线阅读 下载PDF
Numerical Analysis of Magnetic-Shielding Effectiveness for Magnetic Resonant Wireless Power Transfer System 被引量:1
8
作者 卢伟国 李惠荣 +1 位作者 陈伟铭 刘黎辉 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第8期148-151,共4页
Magnetic radiation phenomena appear inevitably in the magnetic-resonance wireless power transfer (MR-WPT) system, and regarding this problem the magnetic-shielding scheme is applied to improve the electromagnetic pe... Magnetic radiation phenomena appear inevitably in the magnetic-resonance wireless power transfer (MR-WPT) system, and regarding this problem the magnetic-shielding scheme is applied to improve the electromagnetic performance in engineering. In this study, the shielding effectiveness of a two-coil MR-WPT system for different material shields is analyzed in theory using Moser's formula and Schelkunoff's formula. On this basis a candidate magnetic-shielding scheme with a double-layer structure is determined, which has better shielding effectiveness and coils coupling coefficient. Finally, some finite element simulation results validate the correctness of the theoretical analysis, and the shielding effectiveness with the double-layer shield in maximum is 30?dB larger than the one with the single-layer case. 展开更多
关键词 MR WPT Numerical Analysis of Magnetic-Shielding Effectiveness for Magnetic Resonant wireless power Transfer System
在线阅读 下载PDF
Design of Wireless Power Transfer with High Efficiency for Biomedical Implants 被引量:1
9
作者 Qingya Li Zhiwei Zhang Jingna Mao 《Journal of Beijing Institute of Technology》 EI CAS 2022年第1期53-60,共8页
Wireless power transfer(WPT)technology is a popular choice for biomedical implant devices.The demands of higher efficiency and smaller implantation size are hard to compromise in previous studies.In the present work,a... Wireless power transfer(WPT)technology is a popular choice for biomedical implant devices.The demands of higher efficiency and smaller implantation size are hard to compromise in previous studies.In the present work,an implantable magnetic coupling resonant WPT system in-tegrated with a metasurface element working at 430 MHz is presented.Similar planar copper coil components for the transmitting and receiving structures are used to construct the primary system,and then the metasurface element is integrated to constitute the whole WPT system.The effects of the distances between the transmitting coil and skin surface,between the skin surface,and receiv-ing coil are discussed.The results show that the efficiency will be enhanced by 38-50 dB integrat-ing with the metasurface. 展开更多
关键词 wireless power transfer(WPT) MINIATURIZATION metasurface
在线阅读 下载PDF
Receiver Power Allocation and Transmitter Power Control Analysis for Multiple-Receiver Wireless Power Transfer Systems
10
作者 Zhi-Hao Guo Shi-Er Dong 《Journal of Electronic Science and Technology》 CAS CSCD 2019年第4期291-299,共9页
As different power has its own receivers,this paper analyzes and designs a multiple-receiver wireless power transfer(WPT)system systematically.The equivalent circuit model of the system is established to analyze the k... As different power has its own receivers,this paper analyzes and designs a multiple-receiver wireless power transfer(WPT)system systematically.The equivalent circuit model of the system is established to analyze the key parameters including transmitter power,receiver power,transmission efficiency,and each receiver power allocation.A control circuit is proposed to achieve the maximum transmission efficiency and transmitter power control and arbitrary receiver power allocation ratios for different receivers.Through the proposed control circuit,receivers with different loads can allocate appropriate power according to its power demand,the transmitter power and system efficiency do not vary with the change of the number of receivers.Finally,this control circuit is validated using a 130-kHz WPT system with three receivers whose power received is 3:10:12,and the overall system efficiency can reach as high as 55.5%. 展开更多
关键词 Multiple-receiver receiver power allocation transmitter power control wireless power transfer(WPT).
在线阅读 下载PDF
Retro-reflective Beamforming Technique with Applications in Wireless Power Transmission
11
作者 WANG Xin LU Mingyu 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第4期545-565,共21页
Retro reflective beamforming technique has the potential of enabling efficient wireless power transmission over long distance(on the order of meters and even kilometers).In retro reflective beamforming,wireless power ... Retro reflective beamforming technique has the potential of enabling efficient wireless power transmission over long distance(on the order of meters and even kilometers).In retro reflective beamforming,wireless power transmission is guided by pilot signal:Based upon pilot signal broadcasted by a wireless power receiver,a wireless power transmitter delivers focused microwave power beam(s)onto the location of wireless power receiver.When the wireless power receiver’s location is not fixed or when the wireless power receiver’s location is unknown to the wireless power transmitter,the microwave power beam would follow the wireless power receiver’s location dynamically as long as the wireless power receiver broadcasts pilot signal periodically.This paper reviews our research endeavors in recent years on retro reflective beamforming technique targeting three applications:(1)wireless charging for low power mobile/portable electronic devices,(2)space solar power satellites(SSPS)application,and(3)wireless charging in fully enclosed space.The feasibility and potential of retro reflective beamforming technique with applications in wireless power transmission are demonstrated by some preliminary experimental results. 展开更多
关键词 wireless power transmission retro⁃reflective beamforming MICROWAVE antenna array pilot signal
在线阅读 下载PDF
The Wireless Power Transmission on the Wristto-Forehead Path Based on the Body Channel
12
作者 Cheng Han Linghui Kong +3 位作者 Qingya Li Shan Yu Zhiwei Zhang Jingna Mao 《Journal of Beijing Institute of Technology》 EI CAS 2022年第1期91-100,共10页
The body channel based wireless power transfer(BC-WPT)method utilizes the human body as the medium to transfer power for bioelectronics,which can achieve a lower transmission loss due to its higher conductivity.Howeve... The body channel based wireless power transfer(BC-WPT)method utilizes the human body as the medium to transfer power for bioelectronics,which can achieve a lower transmission loss due to its higher conductivity.However,except for the channel length,different on-body loca-tions of the transmitter and receiver also influence the power supply performance.This paper fo-cuses on the wrist-to-forehead path to show the potential of BC-WPT for the brain bioelectronics such as the brain computer interface device.The channel characteristics from 10 MHz to 60 MHz are measured by a vector network analyzer(VNA)and a prototype BC-WPT system with differ-ent copper electrodes and the lowest power loss locates between-22 dB and-33 dB.Furthermore,the minimum path loss limit is simulated in Advanced Design System(ADS)software and the low-est optimum path loss can reach nearly-13 dB.Finally,a rectifier circuit is also built at the receiv-er side to harvest d.c.voltage.The results show that the open-circuit voltage(OCV)can reach 1.75 V with the transmitter of 50Ωoutput impedance supplying 5V_(pp)sine voltage at 60 MHz when adopt-ing 1 cm-diameter circular electrodes. 展开更多
关键词 body channel based wireless power transfer(BC-WPT) wrist-to-forehead path chan-nel characteristics minimum path loss limit open-circuit voltage(OCV)
在线阅读 下载PDF
UAV Autonomous Navigation for Wireless Powered Data Collection with Onboard Deep Q-Network
13
作者 LI Yuting DING Yi +3 位作者 GAO Jiangchuan LIU Yusha HU Jie YANG Kun 《ZTE Communications》 2023年第2期80-87,共8页
In a rechargeable wireless sensor network,utilizing the unmanned aerial vehicle(UAV)as a mobile base station(BS)to charge sensors and collect data effectively prolongs the network’s lifetime.In this paper,we jointly ... In a rechargeable wireless sensor network,utilizing the unmanned aerial vehicle(UAV)as a mobile base station(BS)to charge sensors and collect data effectively prolongs the network’s lifetime.In this paper,we jointly optimize the UAV’s flight trajectory and the sensor selection and operation modes to maximize the average data traffic of all sensors within a wireless sensor network(WSN)during finite UAV’s flight time,while ensuring the energy required for each sensor by wireless power transfer(WPT).We consider a practical scenario,where the UAV has no prior knowledge of sensor locations.The UAV performs autonomous navigation based on the status information obtained within the coverage area,which is modeled as a Markov decision process(MDP).The deep Q-network(DQN)is employed to execute the navigation based on the UAV position,the battery level state,channel conditions and current data traffic of sensors within the UAV’s coverage area.Our simulation results demonstrate that the DQN algorithm significantly improves the network performance in terms of the average data traffic and trajectory design. 展开更多
关键词 unmanned aerial vehicle wireless power transfer deep Q-network autonomous navigation
在线阅读 下载PDF
Optimal Design of Wireless Power Transmission Systems Using Antenna Arrays
14
作者 SUN Shuyi WEN Geyi 《ZTE Communications》 2022年第2期19-27,共9页
Three design methods for wireless power transmission(WPT)systems using antenna arrays have been investigated.The three methods,corresponding to three common application scenarios of WPT systems,are based on the method... Three design methods for wireless power transmission(WPT)systems using antenna arrays have been investigated.The three methods,corresponding to three common application scenarios of WPT systems,are based on the method of maximum power transmission efficiency(MMPTE)between two antenna arrays.They are unconstrained MMPTE,weighted MMPTE,and constrained MMPTE.To demonstrate the optimal design process with the three methods,a WPT system operating at 2.45 GHz is designed,simulated,and fabricated,in which the transmitting(Tx)array,consisting of 36 microstrip patch elements,is configured as a square and the receiving(Rx)array,consisting of 5 patch elements,is configured as an L shape.The power transmission efficiency(PTE)is then maximized for the three application scenarios,which yields the maximum possible PTEs and the optimized distributions of excitations for both Tx and Rx arrays.The feeding networks are then built based on the optimized distributions of excitations.Simulations and experiments reveal that the unconstrained MMPTE,which corresponds to the application scenario where no radiation pattern shaping is involved,yields the highest PTE.The next highest PTE belongs to the weighted MMPTE,where the power levels at all the receiving elements are imposed to be equal.The constrained MMPTE has the lowest PTE,corresponding to the scenario in which the radiated power pattern is assumed to be flat along with the Rx array. 展开更多
关键词 wireless power transmission system antenna arrays antenna pattern synthesis feeding network
在线阅读 下载PDF
A Radio⁃Frequency Loop Resonator for Short⁃Range Wireless Power Transmission
15
作者 WANG Xin LI Wenbo LU Mingyu 《ZTE Communications》 2022年第2期43-47,共5页
A microstrip loop resonator loaded with a lumped capacitor is proposed for short-range wireless power transmission applications.The overall physical dimensions of the proposed loop resonator configuration are as small... A microstrip loop resonator loaded with a lumped capacitor is proposed for short-range wireless power transmission applications.The overall physical dimensions of the proposed loop resonator configuration are as small as 3 cm by 3 cm.Power transmission efficiency of greater than 80%is achieved with a power transmission distance smaller than 5 mm via the strong coupling between two loop resonators around 1 GHz,as demonstrated by simulations and measurements.Experimental results also show that the power transmission performance is insensitive to various geometrical misalignments.The numerical and experimental results of this paper reveal a bandwidth of more than 50 MHz within which the power transmission efficiency is above 80%.As a result,the proposed microstrip loop resonator has the potential to accomplish efficient wireless power transmission and high-speed(higher than 10 Mbit/s)wireless communication simultaneously. 展开更多
关键词 loop resonator lumped capacitive loading radio frequency short-range wireless power transmission
在线阅读 下载PDF
Robust Beamforming for Secured Wireless Power Transfer in MIMO Magnetic Resonant Coupling System:A Probabilistic Approach 被引量:2
16
作者 Ling Xing Kaikai Deng Feifei Gao 《China Communications》 SCIE CSCD 2019年第1期97-107,共11页
Wireless power transfer(WPT) to support mobile and portable devices is an emerging wireless technique.Among all kinds of approaches,magnetic resonance coupling(MRC) is an excellent one for mid-range WPT,which provides... Wireless power transfer(WPT) to support mobile and portable devices is an emerging wireless technique.Among all kinds of approaches,magnetic resonance coupling(MRC) is an excellent one for mid-range WPT,which provides better mobility,flexibility,and convenience due to its simplicity in hardware implementation and longer transmission distances.In this paper,we consider an MRCWPT system with multiple power transmitters,one intended power receiver and multiple unintended power receivers.We investigate the probabilistic robust beamforming designs and provide efficient algorithms to achieve the local optimums under two different criteria,i.e.,total source power minimization problem and min-max unintended receiving power restriction problem.As the problems are quite typical in robust design situations,our proposed robust beamformers can be conveniently applied to other probabilistic robust design problems,thus reduce the complexity as well as improve the beamforming performance.Numerical results demonstrate that the proposed algorithms can significantly improve the performance as well as the robustness of the WPT system. 展开更多
关键词 MAGNETIC RESONANCE coupling wireless power transfer BEAMFORMING probabilistic robustness power security
在线阅读 下载PDF
Wireless Information and Power Transfer in Underwater Acoustic Sensor Networks
17
作者 Feng Yizhi Ji Fei 《China Communications》 SCIE CSCD 2024年第10期256-266,共11页
Wireless information and power transfer(WIPT) enables simultaneously communications and sustainable power supplement without the erection of power supply lines and the replacement operation of the batteries for the te... Wireless information and power transfer(WIPT) enables simultaneously communications and sustainable power supplement without the erection of power supply lines and the replacement operation of the batteries for the terminals. The application of WIPT to the underwater acoustic sensor networks(UWASNs) not only retains the long range communication capabilities, but also provides an auxiliary and convenient energy supplement way for the terminal sensors, and thus is a promising scheme to solve the energy-limited problem for the UWASNs. In this paper, we propose the integration of WIPT into the UWASNs and provide an overview on various enabling techniques for the WIPT based UWASNs(WIPT-UWASNs) as well as pointing out future research challenges and opportunities for WIPT-UWASNs. 展开更多
关键词 underwater acoustic modem underwater acoustic sensor network(UWASN) wireless information and power transfer(WIPT)
在线阅读 下载PDF
Computation Rate Maximization in Multi-User Cooperation-Assisted Wireless-Powered Mobile Edge Computing with OFDMA 被引量:1
18
作者 Xinying Wu Yejun He Asad Saleem 《China Communications》 SCIE CSCD 2023年第1期218-229,共12页
In the era of Internet of Things(Io T),mobile edge computing(MEC)and wireless power transfer(WPT)provide a prominent solution for computation-intensive applications to enhance computation capability and achieve sustai... In the era of Internet of Things(Io T),mobile edge computing(MEC)and wireless power transfer(WPT)provide a prominent solution for computation-intensive applications to enhance computation capability and achieve sustainable energy supply.A wireless-powered mobile edge computing(WPMEC)system consisting of a hybrid access point(HAP)combined with MEC servers and many users is considered in this paper.In particular,a novel multiuser cooperation scheme based on orthogonal frequency division multiple access(OFDMA)is provided to improve the computation performance,where users can split the computation tasks into various parts for local computing,offloading to corresponding helper,and HAP for remote execution respectively with the aid of helper.Specifically,we aim at maximizing the weighted sum computation rate(WSCR)by optimizing time assignment,computation-task allocation,and transmission power at the same time while keeping energy neutrality in mind.We transform the original non-convex optimization problem to a convex optimization problem and then obtain a semi-closed form expression of the optimal solution by considering the convex optimization techniques.Simulation results demonstrate that the proposed multi-user cooperationassisted WPMEC scheme greatly improves the WSCR of all users than the existing schemes.In addition,OFDMA protocol increases the fairness and decreases delay among the users when compared to TDMA protocol. 展开更多
关键词 mobile edge computing(MEC) wireless power transfer(WPT) user cooperation OFDMA convex optimization
在线阅读 下载PDF
High-Power Simultaneous Wireless Information and Power Transfer: Injection-Locked Magnetron Technology 被引量:1
19
作者 YANG Bo MITANI Tomohiko +1 位作者 SHINOHARA Naoki ZHANG Huaiqing 《ZTE Communications》 2022年第2期3-12,共10页
Applications using simultaneous wireless information and power transfer(SWIPT)have increased significantly.Wireless communication technologies can be combined with the Internet of Things to develop many innovative app... Applications using simultaneous wireless information and power transfer(SWIPT)have increased significantly.Wireless communication technologies can be combined with the Internet of Things to develop many innovative applications using SWIPT,which is mainly based on wireless energy harvesting from electromagnetic waves used in communications.Wireless power transfer that uses magnetrons has been developed for communication technologies.Injection-locked magnetrons that can be used to facilitate high-power SWIPT for several devices are reviewed in this paper.This new technology is expected to pave the way for promoting the application of SWIPT in a wide range of fields. 展开更多
关键词 simultaneous wireless information and power transfer wireless power transfer MAGNETRONS injection⁃locked Internet of Energy Internet of Things
在线阅读 下载PDF
Decode-and-Forward Relay Based Bidirectional Wireless Information and Power Transfer 被引量:1
20
作者 Ruirui Chen Hailin Zhang 《China Communications》 SCIE CSCD 2017年第8期176-183,共8页
In this paper, we propose the decode-and-forward(DF) based bidirectional wireless information and power transfer(BWIPT) in two-hop relay systems, where the bidirectional relay can decode and forward information from t... In this paper, we propose the decode-and-forward(DF) based bidirectional wireless information and power transfer(BWIPT) in two-hop relay systems, where the bidirectional relay can decode and forward information from the user to the access point(AP), and assist the wireless power transfer from the AP to the user. To maximize the information rate from the user to the AP, we derive the closed form expression of the optimal power splitting(PS) factor, and the time allocation scheme to obtain the optimal time switching(TS) factor. Simulation results show that for both PS and TS protocols, the proposed DF based bidirectional relay systems can improve the information rate as compared with the amplify-and-forward(AF) based bidirectional relay systems. 展开更多
关键词 decode-and-forward wireless power transfer bidirectional relay power splitting time switching
在线阅读 下载PDF
上一页 1 2 81 下一页 到第
使用帮助 返回顶部