How to ensure the security of device access is a common concern in the Internet of Things(IoT)scenario with extremely high device connection density.To achieve efficient and secure network access for IoT devices with ...How to ensure the security of device access is a common concern in the Internet of Things(IoT)scenario with extremely high device connection density.To achieve efficient and secure network access for IoT devices with constrained resources,this paper proposes a lightweight physical-layer authentication protocol based on Physical Unclonable Function(PUF)and channel pre-equalization.PUF is employed as a secret carrier to provide authentication credentials for devices due to its hardware-based uniqueness and unclonable property.Meanwhile,the short-term reciprocity and spatio-temporal uniqueness of wireless channels are utilized to attach an authentication factor related to the spatio-temporal position of devices and to secure the transmission of authentication messages.The proposed protocol is analyzed formally and informally to prove its correctness and security against typical attacks.Simulation results show its robustness in various radio environments.Moreover,we illustrate the advantages of our protocol in terms of security features and complexity through performance comparison with existing authentication schemes.展开更多
The information security and functional safety are fundamental issues of wireless communications sytems.The endogenous security principle based on Dynamic Heterogeneous Redundancy provides a direction for the developm...The information security and functional safety are fundamental issues of wireless communications sytems.The endogenous security principle based on Dynamic Heterogeneous Redundancy provides a direction for the development of wireless communication security and safety technology.This paper introduces the concept of wireless endogenous security from the following four aspects.First,we sorts out the endogenous security problems faced by the current wireless communications system,and then analyzes the endogenous security and safety attributes of the wireless channel.After that,the endogenous security and safety structure of the wireless communications system is given,and finally the applications of the existing wireless communication endogenous security and safety functions are listed.展开更多
The properties of broadcast nature, high densities of deployment and severe resource limitations of sensor and mobile networks make wireless networks more vulnerable to various attacks, including modification of messa...The properties of broadcast nature, high densities of deployment and severe resource limitations of sensor and mobile networks make wireless networks more vulnerable to various attacks, including modification of messages, eavesdropping, network intrusion and malicious forwarding. Conventional cryptography-based security may consume significant overhead because of low-power devices, so current research shifts to the wireless physical layer for security enhancement. This paper is mainly focused on security issues and solutions for wireless communications at the physical layer. It first describes the RSSI-based and channel based wireless authentication methods respectively, and presents an overview of various secrecy capacity analyses of fading channel, MIMO channel and cooperative transmission, and then examines different misbehavior detection methods. Finally it draws conclusions and introduces the direction of our future work.展开更多
Underground mining is a hazardous industrial activity. In order to provide a safe working environment for miners, a Wireless Sensor Network (WSN) technology has been used for security monitoring. It can provide a wide...Underground mining is a hazardous industrial activity. In order to provide a safe working environment for miners, a Wireless Sensor Network (WSN) technology has been used for security monitoring. It can provide a wide range of surveillance with a relatively low cost. In this study, an Energy-Based Multipath Routing (EBMR) protocol is proposed, which considers residual energy capacity and link quality in choosing hops and routing paths. Hops and paths with a high residual energy capacity and link quality will have the best chance to be selected to transmit data packages. Since the EBMR stores several routes in the routing table, when the current path fails, another path will be chosen to fulfill the task immediately. In this way, EBMR improves reliability and decrease time latency. Compared to AOMDV and REAR, EBMR decreases time latency by 51% and 12%.展开更多
The open and broadcast nature of wireless channels leads to the inherent security problem of information leakage in wireless communication.We can utilize endogenous security functions to resolve this problem.The funda...The open and broadcast nature of wireless channels leads to the inherent security problem of information leakage in wireless communication.We can utilize endogenous security functions to resolve this problem.The fundamental solution is channel-based mechanisms,like physical layer secret keys.Unfortunately,current investigations have not fully exploited the randomness of wireless channels,making secret key rates not high.Consequently,user data can be encrypted by reducing the data rate to match the secret key rate.Based on the analysis of the endogenous wireless security principle,we proposed that the channel-based endogenous secret key rate can nearly match the maximum data rate in the fast-fading environments.After that,we validated the proposition in an instantiation system with multiple phase shift keying(MPSK)inputs from the perspectives of both theoretical analysis and simulation experiments.The results indicate that it is possible to accomplish the onetime pad without decreasing the data rate via channelbased endogenous keys.Besides,we can realize highspeed endogenously secure transmission by introducing independent channels in the domains of frequency,space,or time.The conclusions derived provide a new idea for wireless security and promote the application of the endogenous security theory.展开更多
Wireless mesh network is a new emerging field with its potential applications in extremely unpredictable and dynamic environments.However,it is particularly vulnerable due to its features of open medium,dynamic changi...Wireless mesh network is a new emerging field with its potential applications in extremely unpredictable and dynamic environments.However,it is particularly vulnerable due to its features of open medium,dynamic changing topology, cooperative routing algorithms.The article surveys the state of the art in security for wireless mesh networks.Firstly,we analyze various possible threats to security in wireless mesh networks.Secondly,we introduce some representative solutions to these threats,including solutions to the problems of key management,secure network routing,and intrusion detection.We also provide a comparison and discussion of their respective merits and drawbacks,and propose some improvements for these drawbacks.Finally,we also discuss the remaining challenges in the area.展开更多
Convergence and collaboration of heterogeneous networks in the next generation public mobile networks will be a subject of universal significance. Convergence of heterogeneous networks, as an effective approach to imp...Convergence and collaboration of heterogeneous networks in the next generation public mobile networks will be a subject of universal significance. Convergence of heterogeneous networks, as an effective approach to improve the coverage and capacity of public mobile network, to enable communication services, to provide Internet access and to enable mobile computing from everywhere, has drawn widespread attention for its good prospects in application. Construction of security system for wireless heterogeneous networks and development of new security models, key security techniques and approaches are critical and mandatory in heterogeneous networks development. Key technology of wireless heterogeneous networks security covers security routing protocol, access authentication, intrusion detection system, cooperative communication between nodes, etc.展开更多
The wireless application protocol (WAP) protocol is now the leading standard for information services on wireless terminals like digital mobile phones. By the use of WAP, wireless devices, like mobile phones, are po...The wireless application protocol (WAP) protocol is now the leading standard for information services on wireless terminals like digital mobile phones. By the use of WAP, wireless devices, like mobile phones, are possibly infected with virus and worms. Though up to now there is no such attack, as the usage of script languages increases, there is a chance of malicious code injection. This paper discusses the threats with current WAP protocol, and how changes in the protocol and the increase in its usage will enable entry of real viruses. Future threat scenarios are presented along with suggestions to avoid these problems.展开更多
Mobile edge computing can provide powerful computation services around the end-users.However,given the broadcast nature of wireless transmissions,offloading the computation tasks via the uplink channels would raise se...Mobile edge computing can provide powerful computation services around the end-users.However,given the broadcast nature of wireless transmissions,offloading the computation tasks via the uplink channels would raise serious security concerns.This paper proposes an online approach to jointly optimize local processing,transmit power,and task offloading decisions without the a-priori knowledge of the dynamic environments.The proposed approach can guarantee the secure offloading and asymptotically minimize the time-average energy consumption of devices while maintaining the stability of the ergodic secrecy queues and task queues.By exploiting the Lyapunov optimization,the local processing,transmit power,and task offloading variables can be decoupled between time slots.The subproblems on local processing and computation offloading can be solved separately.Convex optimization and graph matching can be used to solve the computation offloading subproblem.Simulations show that the performances of the proposed approach are superior to other popular approaches.展开更多
his special issue is dedicated to security problems in wireless and quan-turn communications. Papers for this issue were invited, and after peer review, eight were selected for publication. The first part of this issu...his special issue is dedicated to security problems in wireless and quan-turn communications. Papers for this issue were invited, and after peer review, eight were selected for publication. The first part of this issue comprises four papers on recent advances in physical layer security forwireless networks. The second Part comprises another four papers on quantum com- munications.展开更多
To ensure the access security of 6G,physical-layer authentication(PLA)leverages the randomness and space-time-frequency uniqueness of the channel to provide unique identity signatures for transmitters.Furthermore,the ...To ensure the access security of 6G,physical-layer authentication(PLA)leverages the randomness and space-time-frequency uniqueness of the channel to provide unique identity signatures for transmitters.Furthermore,the introduction of artificial intelligence(AI)facilitates the learning of the distribution characteristics of channel fingerprints,effectively addressing the uncertainties and unknown dynamic challenges in wireless link modeling.This paper reviews representative AI-enabled PLA schemes and proposes a graph neural network(GNN)-based PLA approach in response to the challenges existing methods face in identifying mobile users.Simulation results demonstrate that the proposed method outperforms six baseline schemes in terms of authentication accuracy.Furthermore,this paper outlines the future development directions of PLA.展开更多
Wireless power transfer(WPT) to support mobile and portable devices is an emerging wireless technique.Among all kinds of approaches,magnetic resonance coupling(MRC) is an excellent one for mid-range WPT,which provides...Wireless power transfer(WPT) to support mobile and portable devices is an emerging wireless technique.Among all kinds of approaches,magnetic resonance coupling(MRC) is an excellent one for mid-range WPT,which provides better mobility,flexibility,and convenience due to its simplicity in hardware implementation and longer transmission distances.In this paper,we consider an MRCWPT system with multiple power transmitters,one intended power receiver and multiple unintended power receivers.We investigate the probabilistic robust beamforming designs and provide efficient algorithms to achieve the local optimums under two different criteria,i.e.,total source power minimization problem and min-max unintended receiving power restriction problem.As the problems are quite typical in robust design situations,our proposed robust beamformers can be conveniently applied to other probabilistic robust design problems,thus reduce the complexity as well as improve the beamforming performance.Numerical results demonstrate that the proposed algorithms can significantly improve the performance as well as the robustness of the WPT system.展开更多
A well-designed Physical-Layer Authentication(PLA)scheme should consider three properties:covertness,robustness,and security.However,the three properties always cause some dilemmas,e.g.,higher covertness leading to lo...A well-designed Physical-Layer Authentication(PLA)scheme should consider three properties:covertness,robustness,and security.However,the three properties always cause some dilemmas,e.g.,higher covertness leading to lower robustness.This paper concerns the problem of improving the covertness without sacrificing the robustness.This problem is important because of the following reasons:reducing the errors in recovered source message,improving the security,and ease of constructing a multi-factor authentication system.In this paper,we propose three covert PLA schemes to address the problem.In the first scheme,we improve the covertness by reducing the modification ratio on the source message based on an encoding mechanism.In the second scheme,we improve the covertness by optimizing the superimposing angle,which maximizes the minimum distance between the tagged symbols and the boundary line of the demodulation decision for the source message.In the third scheme,referred to as the hybrid scheme,we further improve the covertness by jointly using the advantages of both the above two schemes.Our experimental results show that when the SNR at a legitimate receiver is 25 dB,as compared with the prior scheme,the first scheme improves the covertness by 17:74%,the second scheme improves the covertness by 28:79%,and the third scheme improves the covertness by 32:09%,while they have similar robustness as Received:Aug.07,2020 Revised:Sep.08,2020 Editor:Nanrun Zhou that of the prior scheme.展开更多
Due to the openness of wireless multiuser networks,the private information transmitted in uplink or downlink is vulnerable to eavesdropping.Especially,when the downlink transmissions use nonorthogonal multiple access(...Due to the openness of wireless multiuser networks,the private information transmitted in uplink or downlink is vulnerable to eavesdropping.Especially,when the downlink transmissions use nonorthogonal multiple access(NOMA)techniques,the system further encounters interior eavesdropping.In order to address these security problems,we study the secret communication in multiuser networks with both uplink and downlink transmissions.Specifically,in uplink transmissions,the private messages transmitted in each slot are correlated,so any loss of the private information at the eavesdropper will prevent the eavesdropper from decoding the private information in later time slots.In downlink transmissions,the messages are correlated to the uplink information.In this way,any unexpected users who lose the expected user’s uplink information cannot decode its downlink information.The intercept probability is used to measure security performance and we analyze it in theory.Finally,simulation results are provided to corroborate our theoretical analysis.展开更多
This paper studies a simultaneous wireless information and power transfer system with multiple external eavesdroppers and internal curious users.We model the random network by Poisson cluster process in consideration ...This paper studies a simultaneous wireless information and power transfer system with multiple external eavesdroppers and internal curious users.We model the random network by Poisson cluster process in consideration of the case where eavesdroppers hide around certain targets.Focusing on the users that work in harvesting-transmitting mode with time switching receivers,we establish communication model via time division multiple access.On this basis,we propose a lightweight secure transmission scheme based on dual-thresholds for physical-layer security enhancement,which consists of two protocols applied to the downlink(DL) and uplink(UL) transmission respectively.In the DL,we design a dynamic information-power switching transmission protocol based on signal-to-noise ratio threshold,which provides an opportunistic approach to reform the fixed period allocation of information and power transfer;in the UL,an energy threshold is proposed for users to control the transmission,which is called a user-led on-off transmission protocol.Furthermore,we give a comprehensive performance analysis for the proposed scheme in terms of delay,reliability,security and secrecy throughput.Based on the analysis results,we optimize the two thresholds and the DL-UL allocationcoefficient to maximize the secrecy throughput.Simulation results show the proposed scheme can bring about a substantial secrecy gain.展开更多
In this paper, for physical-layer security(PLS), a novel scheme of polar coding encryption is introduced in the wiretap channel(WTC) model. To decrease transmission overhead of the shared secret information and enhanc...In this paper, for physical-layer security(PLS), a novel scheme of polar coding encryption is introduced in the wiretap channel(WTC) model. To decrease transmission overhead of the shared secret information and enhance the security performance against an attacker, we have employed the two following encryption technologies: Firstly, randomization of output bits is not dependent on the traditional randomized bit-channels but they are directly flipped through the random bit sequence. Secondly, for employing Advanced Encryption Standard(AES), we utilize the secret seed to extend an initial secret key of AES cryptosystem, which it appears a good avalanche performance. Result analyses demonstrate that the proposed scheme is strongly resistant against conventional attacks.展开更多
Intrinsic security is a hot topic in the research of 6G network security.A revolution from the traditional“pluginbased”and“patchbased”network security protection mechanism to a self-sensing,self-adaptive and self-...Intrinsic security is a hot topic in the research of 6G network security.A revolution from the traditional“pluginbased”and“patchbased”network security protection mechanism to a self-sensing,self-adaptive and self-growing network immunity system is a general view of 6G intrinsic security in the industry.Massive connection security,physical-layer security,blockchain,and other 6G candidate intrinsic security technologies are analyzed based on 6G applications,especially hot scenarios and key technologies in the ToB(oriented to business)field.展开更多
The wireless fieldbus is a vital part in present industrial automatic controls and software-defined systems. Accompanying, security is an upcoming problem determines its future leapfrog development. Wireless fieldbus ...The wireless fieldbus is a vital part in present industrial automatic controls and software-defined systems. Accompanying, security is an upcoming problem determines its future leapfrog development. Wireless fieldbus systems can be made secure by encrypting the data. Unfortunately, the diffusion character of encryption brings significant vulnerabilities in terms of deteriorated error performance and energy efficiency. In this paper, we first propose an AES-dependent Hsiao(AD-Hsiao) code to improve the error correction capability, which leverages the prior information of data similarity and AES decryption to assist syndrome decoding. Then, we develop "Random Coset" scheme to reduce energy consumption. Based on mapping written data into several data candidates, this scheme lessens the number of bits written to memory and thereby boosts the write energy efficiency. Simulation results show that the AD-Hsiao code can correct majority of double errors in a single codeword with limited latency and area cost as the Hamming code. Moreover, the(72,64) AD-Hsiao code improves the reliability by 102 over the(72,64) Hamming code at 8 dB AWGN channel, and also exceeding the high cost(78,64) BCH code. In addition, the "Random Coset" improves energy efficiency by 6.6~14% than the current scheme while re-quires small ROM storage.展开更多
We analyze and summarize the literatures on secure routing protocols published since 2003.Firstly,threats and attacks on sensor network routing are sorted and summarized.Then the current secure routing protocols are a...We analyze and summarize the literatures on secure routing protocols published since 2003.Firstly,threats and attacks on sensor network routing are sorted and summarized.Then the current secure routing protocols are also classified.According to the taxonomy,some typical secure routing protocols are clarified particularly.Besides,the advantage and disadvantage of these secure routing protocols are compared and analyzed.Finally,we conclude this paper and prospect the future work.展开更多
基金supported by National Natural Science Foundation of China(No.61931020,No.U19B2024 and No.62371462).
文摘How to ensure the security of device access is a common concern in the Internet of Things(IoT)scenario with extremely high device connection density.To achieve efficient and secure network access for IoT devices with constrained resources,this paper proposes a lightweight physical-layer authentication protocol based on Physical Unclonable Function(PUF)and channel pre-equalization.PUF is employed as a secret carrier to provide authentication credentials for devices due to its hardware-based uniqueness and unclonable property.Meanwhile,the short-term reciprocity and spatio-temporal uniqueness of wireless channels are utilized to attach an authentication factor related to the spatio-temporal position of devices and to secure the transmission of authentication messages.The proposed protocol is analyzed formally and informally to prove its correctness and security against typical attacks.Simulation results show its robustness in various radio environments.Moreover,we illustrate the advantages of our protocol in terms of security features and complexity through performance comparison with existing authentication schemes.
基金National Natural Science Foundation of China(No.61941114 and No.61521003)Key Universities and Academic Disciplines Contruction Project。
文摘The information security and functional safety are fundamental issues of wireless communications sytems.The endogenous security principle based on Dynamic Heterogeneous Redundancy provides a direction for the development of wireless communication security and safety technology.This paper introduces the concept of wireless endogenous security from the following four aspects.First,we sorts out the endogenous security problems faced by the current wireless communications system,and then analyzes the endogenous security and safety attributes of the wireless channel.After that,the endogenous security and safety structure of the wireless communications system is given,and finally the applications of the existing wireless communication endogenous security and safety functions are listed.
基金supported in part by State Key Program of National Nature Science Foundation of China under Grant No.60932003National High Technical Research and Development Program of China (863 Program ) under Grant No.2007AA01Z452
文摘The properties of broadcast nature, high densities of deployment and severe resource limitations of sensor and mobile networks make wireless networks more vulnerable to various attacks, including modification of messages, eavesdropping, network intrusion and malicious forwarding. Conventional cryptography-based security may consume significant overhead because of low-power devices, so current research shifts to the wireless physical layer for security enhancement. This paper is mainly focused on security issues and solutions for wireless communications at the physical layer. It first describes the RSSI-based and channel based wireless authentication methods respectively, and presents an overview of various secrecy capacity analyses of fading channel, MIMO channel and cooperative transmission, and then examines different misbehavior detection methods. Finally it draws conclusions and introduces the direction of our future work.
基金Financial support for this study, provided by the National Natural Science Foundation of China (No.60674002) the Science and Technology Research of the Ministry of Railways of China (No. 2006x006-E), is gratefully acknowledged
文摘Underground mining is a hazardous industrial activity. In order to provide a safe working environment for miners, a Wireless Sensor Network (WSN) technology has been used for security monitoring. It can provide a wide range of surveillance with a relatively low cost. In this study, an Energy-Based Multipath Routing (EBMR) protocol is proposed, which considers residual energy capacity and link quality in choosing hops and routing paths. Hops and paths with a high residual energy capacity and link quality will have the best chance to be selected to transmit data packages. Since the EBMR stores several routes in the routing table, when the current path fails, another path will be chosen to fulfill the task immediately. In this way, EBMR improves reliability and decrease time latency. Compared to AOMDV and REAR, EBMR decreases time latency by 51% and 12%.
基金funded by the National Key R&D Program of China under Grant 2017YFB0801903the National Natural Science Foundation of China under Grant 61871404,61701538,61521003Doctoral Fund of Ministry of Education of China under Grant 2019M663994。
文摘The open and broadcast nature of wireless channels leads to the inherent security problem of information leakage in wireless communication.We can utilize endogenous security functions to resolve this problem.The fundamental solution is channel-based mechanisms,like physical layer secret keys.Unfortunately,current investigations have not fully exploited the randomness of wireless channels,making secret key rates not high.Consequently,user data can be encrypted by reducing the data rate to match the secret key rate.Based on the analysis of the endogenous wireless security principle,we proposed that the channel-based endogenous secret key rate can nearly match the maximum data rate in the fast-fading environments.After that,we validated the proposition in an instantiation system with multiple phase shift keying(MPSK)inputs from the perspectives of both theoretical analysis and simulation experiments.The results indicate that it is possible to accomplish the onetime pad without decreasing the data rate via channelbased endogenous keys.Besides,we can realize highspeed endogenously secure transmission by introducing independent channels in the domains of frequency,space,or time.The conclusions derived provide a new idea for wireless security and promote the application of the endogenous security theory.
基金Project supported by the Shanghai Minicipal Natural Science Foundation(Grant No09ZR1414900)the National High Technology Development 863 Program of China(Grant No2006AA01Z436,No2007AA01Z452,No2009AA01Z118)
文摘Wireless mesh network is a new emerging field with its potential applications in extremely unpredictable and dynamic environments.However,it is particularly vulnerable due to its features of open medium,dynamic changing topology, cooperative routing algorithms.The article surveys the state of the art in security for wireless mesh networks.Firstly,we analyze various possible threats to security in wireless mesh networks.Secondly,we introduce some representative solutions to these threats,including solutions to the problems of key management,secure network routing,and intrusion detection.We also provide a comparison and discussion of their respective merits and drawbacks,and propose some improvements for these drawbacks.Finally,we also discuss the remaining challenges in the area.
基金the Jiangsu Natural Science Foundation under Grant No.BK2007236Jiangsu Six-Categories Top Talent Fundunder Grand No.SJ207001
文摘Convergence and collaboration of heterogeneous networks in the next generation public mobile networks will be a subject of universal significance. Convergence of heterogeneous networks, as an effective approach to improve the coverage and capacity of public mobile network, to enable communication services, to provide Internet access and to enable mobile computing from everywhere, has drawn widespread attention for its good prospects in application. Construction of security system for wireless heterogeneous networks and development of new security models, key security techniques and approaches are critical and mandatory in heterogeneous networks development. Key technology of wireless heterogeneous networks security covers security routing protocol, access authentication, intrusion detection system, cooperative communication between nodes, etc.
文摘The wireless application protocol (WAP) protocol is now the leading standard for information services on wireless terminals like digital mobile phones. By the use of WAP, wireless devices, like mobile phones, are possibly infected with virus and worms. Though up to now there is no such attack, as the usage of script languages increases, there is a chance of malicious code injection. This paper discusses the threats with current WAP protocol, and how changes in the protocol and the increase in its usage will enable entry of real viruses. Future threat scenarios are presented along with suggestions to avoid these problems.
基金National Nature Science Foundation Project of P.R.China under Grant No.61701554 and No.52071349in part by State Language Commission Key Project(ZDl135-39)in part by Promotion plan for young teachers’scientific research ability of Minzu University of China,MUC 111 Project.
文摘Mobile edge computing can provide powerful computation services around the end-users.However,given the broadcast nature of wireless transmissions,offloading the computation tasks via the uplink channels would raise serious security concerns.This paper proposes an online approach to jointly optimize local processing,transmit power,and task offloading decisions without the a-priori knowledge of the dynamic environments.The proposed approach can guarantee the secure offloading and asymptotically minimize the time-average energy consumption of devices while maintaining the stability of the ergodic secrecy queues and task queues.By exploiting the Lyapunov optimization,the local processing,transmit power,and task offloading variables can be decoupled between time slots.The subproblems on local processing and computation offloading can be solved separately.Convex optimization and graph matching can be used to solve the computation offloading subproblem.Simulations show that the performances of the proposed approach are superior to other popular approaches.
文摘his special issue is dedicated to security problems in wireless and quan-turn communications. Papers for this issue were invited, and after peer review, eight were selected for publication. The first part of this issue comprises four papers on recent advances in physical layer security forwireless networks. The second Part comprises another four papers on quantum com- munications.
文摘To ensure the access security of 6G,physical-layer authentication(PLA)leverages the randomness and space-time-frequency uniqueness of the channel to provide unique identity signatures for transmitters.Furthermore,the introduction of artificial intelligence(AI)facilitates the learning of the distribution characteristics of channel fingerprints,effectively addressing the uncertainties and unknown dynamic challenges in wireless link modeling.This paper reviews representative AI-enabled PLA schemes and proposes a graph neural network(GNN)-based PLA approach in response to the challenges existing methods face in identifying mobile users.Simulation results demonstrate that the proposed method outperforms six baseline schemes in terms of authentication accuracy.Furthermore,this paper outlines the future development directions of PLA.
基金supported by National Natural Science Foundation of China(Grant No.61771185,61831013)Science and Technology Research Project of Henan Province(Grant No.182102210044)+1 种基金Key Scientific Research Program of Henan Higher Education(Grant No.18A510009)Beijing Municipal Natural Science Foundation(Grant No.4182030)
文摘Wireless power transfer(WPT) to support mobile and portable devices is an emerging wireless technique.Among all kinds of approaches,magnetic resonance coupling(MRC) is an excellent one for mid-range WPT,which provides better mobility,flexibility,and convenience due to its simplicity in hardware implementation and longer transmission distances.In this paper,we consider an MRCWPT system with multiple power transmitters,one intended power receiver and multiple unintended power receivers.We investigate the probabilistic robust beamforming designs and provide efficient algorithms to achieve the local optimums under two different criteria,i.e.,total source power minimization problem and min-max unintended receiving power restriction problem.As the problems are quite typical in robust design situations,our proposed robust beamformers can be conveniently applied to other probabilistic robust design problems,thus reduce the complexity as well as improve the beamforming performance.Numerical results demonstrate that the proposed algorithms can significantly improve the performance as well as the robustness of the WPT system.
基金partially supported by Natural Science Foundations of China(No.61972262)National Key R&D Project of China(No.2020YFB1805404)+2 种基金Natural Science Foundation of Guangdong,China(No.2016A030313046)Fundamental Research Programs of Shenzhen City(No.JCYJ20180305124648757)China Scholarship Council(No.201908440031).
文摘A well-designed Physical-Layer Authentication(PLA)scheme should consider three properties:covertness,robustness,and security.However,the three properties always cause some dilemmas,e.g.,higher covertness leading to lower robustness.This paper concerns the problem of improving the covertness without sacrificing the robustness.This problem is important because of the following reasons:reducing the errors in recovered source message,improving the security,and ease of constructing a multi-factor authentication system.In this paper,we propose three covert PLA schemes to address the problem.In the first scheme,we improve the covertness by reducing the modification ratio on the source message based on an encoding mechanism.In the second scheme,we improve the covertness by optimizing the superimposing angle,which maximizes the minimum distance between the tagged symbols and the boundary line of the demodulation decision for the source message.In the third scheme,referred to as the hybrid scheme,we further improve the covertness by jointly using the advantages of both the above two schemes.Our experimental results show that when the SNR at a legitimate receiver is 25 dB,as compared with the prior scheme,the first scheme improves the covertness by 17:74%,the second scheme improves the covertness by 28:79%,and the third scheme improves the covertness by 32:09%,while they have similar robustness as Received:Aug.07,2020 Revised:Sep.08,2020 Editor:Nanrun Zhou that of the prior scheme.
基金supported in part by the Fundamental Research Funds for the Central Universities(No.21620350)in part by the National Natural Science Foundation of China(No.62102167 and No.62032025)in part by the Guangdong Basic and Applied Basic Research Foundation(2020A1515110364).
文摘Due to the openness of wireless multiuser networks,the private information transmitted in uplink or downlink is vulnerable to eavesdropping.Especially,when the downlink transmissions use nonorthogonal multiple access(NOMA)techniques,the system further encounters interior eavesdropping.In order to address these security problems,we study the secret communication in multiuser networks with both uplink and downlink transmissions.Specifically,in uplink transmissions,the private messages transmitted in each slot are correlated,so any loss of the private information at the eavesdropper will prevent the eavesdropper from decoding the private information in later time slots.In downlink transmissions,the messages are correlated to the uplink information.In this way,any unexpected users who lose the expected user’s uplink information cannot decode its downlink information.The intercept probability is used to measure security performance and we analyze it in theory.Finally,simulation results are provided to corroborate our theoretical analysis.
基金supported in part by China High-Tech RD Program(863 Program) SS2015AA011306National Natural Science Foundation of China under Grants No.61379006,61401510,61501516,61521003
文摘This paper studies a simultaneous wireless information and power transfer system with multiple external eavesdroppers and internal curious users.We model the random network by Poisson cluster process in consideration of the case where eavesdroppers hide around certain targets.Focusing on the users that work in harvesting-transmitting mode with time switching receivers,we establish communication model via time division multiple access.On this basis,we propose a lightweight secure transmission scheme based on dual-thresholds for physical-layer security enhancement,which consists of two protocols applied to the downlink(DL) and uplink(UL) transmission respectively.In the DL,we design a dynamic information-power switching transmission protocol based on signal-to-noise ratio threshold,which provides an opportunistic approach to reform the fixed period allocation of information and power transfer;in the UL,an energy threshold is proposed for users to control the transmission,which is called a user-led on-off transmission protocol.Furthermore,we give a comprehensive performance analysis for the proposed scheme in terms of delay,reliability,security and secrecy throughput.Based on the analysis results,we optimize the two thresholds and the DL-UL allocationcoefficient to maximize the secrecy throughput.Simulation results show the proposed scheme can bring about a substantial secrecy gain.
基金supported in part by the National Natural Science Foundation of China (Grant No. 61871009)
文摘In this paper, for physical-layer security(PLS), a novel scheme of polar coding encryption is introduced in the wiretap channel(WTC) model. To decrease transmission overhead of the shared secret information and enhance the security performance against an attacker, we have employed the two following encryption technologies: Firstly, randomization of output bits is not dependent on the traditional randomized bit-channels but they are directly flipped through the random bit sequence. Secondly, for employing Advanced Encryption Standard(AES), we utilize the secret seed to extend an initial secret key of AES cryptosystem, which it appears a good avalanche performance. Result analyses demonstrate that the proposed scheme is strongly resistant against conventional attacks.
基金supported by the National Key Research and Development Program of China(6G Network Architecture and Key Technologies)under Grant No.2020YFB1806704.
文摘Intrinsic security is a hot topic in the research of 6G network security.A revolution from the traditional“pluginbased”and“patchbased”network security protection mechanism to a self-sensing,self-adaptive and self-growing network immunity system is a general view of 6G intrinsic security in the industry.Massive connection security,physical-layer security,blockchain,and other 6G candidate intrinsic security technologies are analyzed based on 6G applications,especially hot scenarios and key technologies in the ToB(oriented to business)field.
基金supported by the National Natural Science Foundation of China (NSFC, 91538202, 91338103)the new strategic industries development projects of Shenzhen City (JCYJ20160520140157342,CXZZ20150928165834560)
文摘The wireless fieldbus is a vital part in present industrial automatic controls and software-defined systems. Accompanying, security is an upcoming problem determines its future leapfrog development. Wireless fieldbus systems can be made secure by encrypting the data. Unfortunately, the diffusion character of encryption brings significant vulnerabilities in terms of deteriorated error performance and energy efficiency. In this paper, we first propose an AES-dependent Hsiao(AD-Hsiao) code to improve the error correction capability, which leverages the prior information of data similarity and AES decryption to assist syndrome decoding. Then, we develop "Random Coset" scheme to reduce energy consumption. Based on mapping written data into several data candidates, this scheme lessens the number of bits written to memory and thereby boosts the write energy efficiency. Simulation results show that the AD-Hsiao code can correct majority of double errors in a single codeword with limited latency and area cost as the Hamming code. Moreover, the(72,64) AD-Hsiao code improves the reliability by 102 over the(72,64) Hamming code at 8 dB AWGN channel, and also exceeding the high cost(78,64) BCH code. In addition, the "Random Coset" improves energy efficiency by 6.6~14% than the current scheme while re-quires small ROM storage.
基金supported by the National Natural Science Foundation of China(No. 60573141, 60773041)National High Technology Research and Devel-opment Program of China(863 Program) (No. 2006AA01Z201, 2006AA01Z219, 2007AA01Z404, 2007AA01 Z478)the Provincial Jiangsu High Technology Research Program(No. BG2006001)
文摘We analyze and summarize the literatures on secure routing protocols published since 2003.Firstly,threats and attacks on sensor network routing are sorted and summarized.Then the current secure routing protocols are also classified.According to the taxonomy,some typical secure routing protocols are clarified particularly.Besides,the advantage and disadvantage of these secure routing protocols are compared and analyzed.Finally,we conclude this paper and prospect the future work.