The Underwater Communication Link(UCL)is a crucial component of Underwater Wireless Optical Communication(UWOC)systems,requiring optimised design to mitigate the high power attenuation inherent in seawater.To ensure t...The Underwater Communication Link(UCL)is a crucial component of Underwater Wireless Optical Communication(UWOC)systems,requiring optimised design to mitigate the high power attenuation inherent in seawater.To ensure the reliability of an optimal UCL design,it is essential to account for the three primary scattering regimes:forward scattering(FSC),backward scattering(BSC),and isotropic scattering(ISC)in seawater channels.This study introduces a new photon-tracking model based on a discrete equation,facilitating Monte Carlo Simulation(MCS)to evaluate how different scattering regimes influence received photon distribution.Three distinct Scattering Regime Contribution Weight(SRCW)probability sets were employed,each representing different UCL operational configurations dominated by specific scattering regimes.The proposed modeling approach enables a comprehensive assessment of the temporal characteristics of received optical pulses,channel loss,and time spread-ultimately defining the optimal UCL design parameters.The key findings of this study include:(1)Enhancing the FSC regime dominance leads to a quasi-light waveguide effect over link spans and small Fields of View(FOV)<25°,significantly improving channel performance in Harbor seawater compared to Coastal seawater.(2)A well-designed UCL with a small FOV(<25°)can minimise channel loss and time spread,ensuring high capacity and efficient performance in both Coastal and Harbor seawaters.(3)When BSC and ISC contributions exceed FSC dominance,the received optical pulse undergoes significant temporal broadening,particularly for larger FOV angles(>25°)and extended link spans.(4)The developed novel MCS-based discrete equation provides a simple yet robust model for simulating photon propagation in both homogeneous and inhomogeneous underwater channels.These insights contribute to developing more efficient and reliable UCL designs with military standards by enhancing UWOC system performance over a longer linkspan for a given limited optical power across various underwater environments.展开更多
As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from bo...As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from both its environment and other agents,an agent can use various methods and sensor types to localize itself.With its high flexibility and robustness,collaborative positioning has become a widely used method in both military and civilian applications.This paper introduces the basic fundamental concepts and applications of collaborative positioning,and reviews recent progress in the field based on camera,LiDAR(Light Detection and Ranging),wireless sensor,and their integration.The paper compares the current methods with respect to their sensor type,summarizes their main paradigms,and analyzes their evaluation experiments.Finally,the paper discusses the main challenges and open issues that require further research.展开更多
To the existing spectrum sharing schemes in wireless-powered cognitive wireless sensor networks,the protocols are limited to either separate the primary and the secondary transmission or allow the secondary user to tr...To the existing spectrum sharing schemes in wireless-powered cognitive wireless sensor networks,the protocols are limited to either separate the primary and the secondary transmission or allow the secondary user to transmit signals in a time slot when it forwards the primary signal.In order to address this limitation,a novel cooperative spectrum sharing scheme is proposed,where the secondary transmission is multiplexed with both the primary transmission and the relay transmission.Specifically,the process of transmission is on a three-phase time-switching relaying basis.In the first phase,a cognitive sensor node SU1 scavenges energy from the primary transmission.In the second phase,another sensor node SU2 and primary transmitter simultaneously transmit signals to the SU1.In the third phase,the node SU1 can assist the primary transmission to acquire the opportunity of spectrum sharing.Joint decoding and interference cancellation technique is adopted at the receivers to retrieve the desired signals.We further derive the closed-form expressions for the outage probabilities of both the primary and secondary systems.Moreover,we address optimization of energy harvesting duration and power allocation coefficient strategy under performance criteria.An effective algorithm is then presented to solve the optimization problem.Simulation results demonstrate that with the optimized solutions,the sensor nodes with the proposed cooperative spectrum sharing scheme can utilize the spectrum in a more efficient manner without deteriorating the performance of the primary transmission,as compared with the existing one-directional scheme in the literature.展开更多
In order to reduce power consumption of sensor nodes and extend network survival time in the wireless sensor network (WSN), sensor nodes are scheduled in an active or dormant mode. A chain-type WSN is fundamental y ...In order to reduce power consumption of sensor nodes and extend network survival time in the wireless sensor network (WSN), sensor nodes are scheduled in an active or dormant mode. A chain-type WSN is fundamental y different from other types of WSNs, in which the sensor nodes are deployed along elongated geographic areas and form a chain-type network topo-logy structure. This paper investigates the node scheduling prob-lem in the chain-type WSN. Firstly, a node dormant scheduling mode is analyzed theoretical y from geographic coverage, and then three neighboring nodes scheduling criteria are proposed. Sec-ondly, a hybrid coverage scheduling algorithm and dead areas are presented. Final y, node scheduling in mine tunnel WSN with uniform deployment (UD), non-uniform deployment (NUD) and op-timal distribution point spacing (ODS) is simulated. The results show that the node scheduling with UD and NUD, especial y NUD, can effectively extend the network survival time. Therefore, a strat-egy of adding a few mobile nodes which activate the network in dead areas is proposed, which can further extend the network survival time by balancing the energy consumption of nodes.展开更多
针对广义电磁环境复杂度定量评估在实际应用过程中精确计算实现难的问题,提出了基于Wireless In Site与MATLAB相结合的计算方法。该方法通过对Wireless In Site与MATLAB接口程序研究和开发,实现了利用Wireless In Site快速准确计算用频...针对广义电磁环境复杂度定量评估在实际应用过程中精确计算实现难的问题,提出了基于Wireless In Site与MATLAB相结合的计算方法。该方法通过对Wireless In Site与MATLAB接口程序研究和开发,实现了利用Wireless In Site快速准确计算用频设备的电波传播功率,同时也实现计算结果的自动读取,并将计算的电波传播功率代入电磁环境四域评估计算公式,最终完成电磁环境的定量评估。通过仿真试验与分析,举例说明了该方法应用的便利性和有效性。展开更多
To avoid uneven energy consuming in wireless sen- sor networks, a clustering routing model is proposed based on a Bayesian game. In the model, Harsanyi transformation is introduced to convert a static game of incomple...To avoid uneven energy consuming in wireless sen- sor networks, a clustering routing model is proposed based on a Bayesian game. In the model, Harsanyi transformation is introduced to convert a static game of incomplete information to the static game of complete but imperfect information. In addition, the existence of Bayesian nash equilibrium is proved. A clustering routing algorithm is also designed according to the proposed model, both cluster head distribution and residual energy are considered in the design of the algorithm. Simulation results show that the algorithm can balance network load, save energy and prolong network lifetime effectively.展开更多
Energy saving is the most important issue in research and development for wireless sensor networks. A power control mechanism can reduce the power consumption of the whole network. Because the character of wireless se...Energy saving is the most important issue in research and development for wireless sensor networks. A power control mechanism can reduce the power consumption of the whole network. Because the character of wireless sensor networks is restrictive energy, this paper proposes a distributed power control algorithm based on game theory for wireless sensor networks which objects of which are reducing power consumption and decreasing overhead and increasing network lifetime. The game theory and OPNET simulation shows that the power control algorithm converges to a Nash Equilibrium when decisions are updated according to a better response dynamic.展开更多
This paper proposes fault tolerant algorithms for routing mobile agents in a single channel wireless sensor network which cover every node in the network. These algorithms use local knowledge (assume no knowledge of g...This paper proposes fault tolerant algorithms for routing mobile agents in a single channel wireless sensor network which cover every node in the network. These algorithms use local knowledge (assume no knowledge of global deployment or topology, etc). We propose the algorithms and show mathematical analysis to support our claims. The paper ends with simulation studies and discussion of results.展开更多
Due to the mutual interference and sharing of wireless links in TDMA wireless sensor networks, conflicts will occur when data messages are transmitting between nodes. The broadcast scheduling problem (BSP) is aimed ...Due to the mutual interference and sharing of wireless links in TDMA wireless sensor networks, conflicts will occur when data messages are transmitting between nodes. The broadcast scheduling problem (BSP) is aimed to schedule each node in different slot of fixed length frame at least once, and the objective of BSP is to seek for the optimal feasible solution, which has the shortest length of frame slots, as well as the maximum node transmission. A two-stage mixed algorithm based on a fuzzy Hopfield neural network is proposed to solve this BSP in wireless sensor network. In the first stage, a modified sequential vertex coloring algorithm is adopted to obtain a minimal TDMA frame length. In the second stage, the fuzzy Hopfleld network is utilized to maximize the channel utilization ratio. Experimental results, obtained from the running on three benchmark graphs, show that the algorithm can achieve better performance with shorter frame length and higher channel utilizing ratio than other exiting BSP solutions.展开更多
Multi-target tracking(MTT) is a research hotspot of wireless sensor networks at present.A self-organized dynamic cluster task allocation scheme is used to implement collaborative task allocation for MTT in WSN and a s...Multi-target tracking(MTT) is a research hotspot of wireless sensor networks at present.A self-organized dynamic cluster task allocation scheme is used to implement collaborative task allocation for MTT in WSN and a special cluster member(CM) node selection method is put forward in the scheme.An energy efficiency model was proposed under consideration of both energy consumption and remaining energy balance in the network.A tracking accuracy model based on area-sum principle was also presented through analyzing the localization accuracy of triangulation.Then,the two models mentioned above were combined to establish dynamic cluster member selection model for MTT where a comprehensive performance index function was designed to guide the CM node selection.This selection was fulfilled using genetic algorithm.Simulation results show that this method keeps both energy efficiency and tracking quality in optimal state,and also indicate the validity of genetic algorithm in implementing CM node selection.展开更多
This paper introduces a parking management system based on a wireless sensor network developed by our group. The system consists of a large amount of parking space monitoring nodes, a few parking guiding nodes, a sink...This paper introduces a parking management system based on a wireless sensor network developed by our group. The system consists of a large amount of parking space monitoring nodes, a few parking guiding nodes, a sink node and a management station. All the nodes exchange information with each other through wireless communication. The prototype of the parking management system has been implemented and the preliminary test results show that the performance of the system can satisfy the requirements of the application.展开更多
In wireless sensor networks, target classification differs from that in centralized sensing systems because of the distributed detection, wireless communication and limited resources. We study the classification probl...In wireless sensor networks, target classification differs from that in centralized sensing systems because of the distributed detection, wireless communication and limited resources. We study the classification problem of moving vehicles in wireless sensor networks using acoustic signals emitted from vehicles. Three algorithms including wavelet decomposition, weighted k-nearest-neighbor and Dempster-Shafer theory are combined in this paper. Finally, we use real world experimental data to validate the classification methods. The result shows that wavelet based feature extraction method can extract stable features from acoustic signals. By fusion with Dempster's rule, the classification performance is improved.展开更多
基金The Deanship of Scientific Research(DSR)at King Abdulaziz University(KAU),Jeddah,Saudi Arabia,has funded this project under Grant No.(KEP-PhD:72-130-1443).
文摘The Underwater Communication Link(UCL)is a crucial component of Underwater Wireless Optical Communication(UWOC)systems,requiring optimised design to mitigate the high power attenuation inherent in seawater.To ensure the reliability of an optimal UCL design,it is essential to account for the three primary scattering regimes:forward scattering(FSC),backward scattering(BSC),and isotropic scattering(ISC)in seawater channels.This study introduces a new photon-tracking model based on a discrete equation,facilitating Monte Carlo Simulation(MCS)to evaluate how different scattering regimes influence received photon distribution.Three distinct Scattering Regime Contribution Weight(SRCW)probability sets were employed,each representing different UCL operational configurations dominated by specific scattering regimes.The proposed modeling approach enables a comprehensive assessment of the temporal characteristics of received optical pulses,channel loss,and time spread-ultimately defining the optimal UCL design parameters.The key findings of this study include:(1)Enhancing the FSC regime dominance leads to a quasi-light waveguide effect over link spans and small Fields of View(FOV)<25°,significantly improving channel performance in Harbor seawater compared to Coastal seawater.(2)A well-designed UCL with a small FOV(<25°)can minimise channel loss and time spread,ensuring high capacity and efficient performance in both Coastal and Harbor seawaters.(3)When BSC and ISC contributions exceed FSC dominance,the received optical pulse undergoes significant temporal broadening,particularly for larger FOV angles(>25°)and extended link spans.(4)The developed novel MCS-based discrete equation provides a simple yet robust model for simulating photon propagation in both homogeneous and inhomogeneous underwater channels.These insights contribute to developing more efficient and reliable UCL designs with military standards by enhancing UWOC system performance over a longer linkspan for a given limited optical power across various underwater environments.
基金National Natural Science Foundation of China(Grant No.62101138)Shandong Natural Science Foundation(Grant No.ZR2021QD148)+1 种基金Guangdong Natural Science Foundation(Grant No.2022A1515012573)Guangzhou Basic and Applied Basic Research Project(Grant No.202102020701)for providing funds for publishing this paper。
文摘As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from both its environment and other agents,an agent can use various methods and sensor types to localize itself.With its high flexibility and robustness,collaborative positioning has become a widely used method in both military and civilian applications.This paper introduces the basic fundamental concepts and applications of collaborative positioning,and reviews recent progress in the field based on camera,LiDAR(Light Detection and Ranging),wireless sensor,and their integration.The paper compares the current methods with respect to their sensor type,summarizes their main paradigms,and analyzes their evaluation experiments.Finally,the paper discusses the main challenges and open issues that require further research.
基金Project (61201086) supported by the National Natural Science Foundation of ChinaProject (201506375060) supported by the China Scholarship Council+2 种基金Project (2013B090500007) supported by Guangdong Provincial Science and Technology Project,ChinaProject (2014509102205) supported by the Dongguan Municipal Project on the Integration of Industry,Education and Research,ChinaProject (2017GK5019) supported by 2017 Hunan-Tech&Innovation Investment Project,China
文摘To the existing spectrum sharing schemes in wireless-powered cognitive wireless sensor networks,the protocols are limited to either separate the primary and the secondary transmission or allow the secondary user to transmit signals in a time slot when it forwards the primary signal.In order to address this limitation,a novel cooperative spectrum sharing scheme is proposed,where the secondary transmission is multiplexed with both the primary transmission and the relay transmission.Specifically,the process of transmission is on a three-phase time-switching relaying basis.In the first phase,a cognitive sensor node SU1 scavenges energy from the primary transmission.In the second phase,another sensor node SU2 and primary transmitter simultaneously transmit signals to the SU1.In the third phase,the node SU1 can assist the primary transmission to acquire the opportunity of spectrum sharing.Joint decoding and interference cancellation technique is adopted at the receivers to retrieve the desired signals.We further derive the closed-form expressions for the outage probabilities of both the primary and secondary systems.Moreover,we address optimization of energy harvesting duration and power allocation coefficient strategy under performance criteria.An effective algorithm is then presented to solve the optimization problem.Simulation results demonstrate that with the optimized solutions,the sensor nodes with the proposed cooperative spectrum sharing scheme can utilize the spectrum in a more efficient manner without deteriorating the performance of the primary transmission,as compared with the existing one-directional scheme in the literature.
基金supported by the China Doctoral Discipline New Teacher Foundation(200802901507)the Sichuan Province Basic Research Plan Project(2013JY0165)the Cultivating Programme of Excellent Innovation Team of Chengdu University of Technology(KYTD201301)
文摘In order to reduce power consumption of sensor nodes and extend network survival time in the wireless sensor network (WSN), sensor nodes are scheduled in an active or dormant mode. A chain-type WSN is fundamental y different from other types of WSNs, in which the sensor nodes are deployed along elongated geographic areas and form a chain-type network topo-logy structure. This paper investigates the node scheduling prob-lem in the chain-type WSN. Firstly, a node dormant scheduling mode is analyzed theoretical y from geographic coverage, and then three neighboring nodes scheduling criteria are proposed. Sec-ondly, a hybrid coverage scheduling algorithm and dead areas are presented. Final y, node scheduling in mine tunnel WSN with uniform deployment (UD), non-uniform deployment (NUD) and op-timal distribution point spacing (ODS) is simulated. The results show that the node scheduling with UD and NUD, especial y NUD, can effectively extend the network survival time. Therefore, a strat-egy of adding a few mobile nodes which activate the network in dead areas is proposed, which can further extend the network survival time by balancing the energy consumption of nodes.
文摘针对广义电磁环境复杂度定量评估在实际应用过程中精确计算实现难的问题,提出了基于Wireless In Site与MATLAB相结合的计算方法。该方法通过对Wireless In Site与MATLAB接口程序研究和开发,实现了利用Wireless In Site快速准确计算用频设备的电波传播功率,同时也实现计算结果的自动读取,并将计算的电波传播功率代入电磁环境四域评估计算公式,最终完成电磁环境的定量评估。通过仿真试验与分析,举例说明了该方法应用的便利性和有效性。
基金supported by the National Natural Science Fundation of China (60974082 60874085)+2 种基金the Fundamental Research Funds for the Central Universities (K50510700004)the Technology Plan Projects of Guangdong Province (20110401)the Team Project of Hanshan Normal University (LT201001)
文摘To avoid uneven energy consuming in wireless sen- sor networks, a clustering routing model is proposed based on a Bayesian game. In the model, Harsanyi transformation is introduced to convert a static game of incomplete information to the static game of complete but imperfect information. In addition, the existence of Bayesian nash equilibrium is proved. A clustering routing algorithm is also designed according to the proposed model, both cluster head distribution and residual energy are considered in the design of the algorithm. Simulation results show that the algorithm can balance network load, save energy and prolong network lifetime effectively.
文摘Energy saving is the most important issue in research and development for wireless sensor networks. A power control mechanism can reduce the power consumption of the whole network. Because the character of wireless sensor networks is restrictive energy, this paper proposes a distributed power control algorithm based on game theory for wireless sensor networks which objects of which are reducing power consumption and decreasing overhead and increasing network lifetime. The game theory and OPNET simulation shows that the power control algorithm converges to a Nash Equilibrium when decisions are updated according to a better response dynamic.
文摘This paper proposes fault tolerant algorithms for routing mobile agents in a single channel wireless sensor network which cover every node in the network. These algorithms use local knowledge (assume no knowledge of global deployment or topology, etc). We propose the algorithms and show mathematical analysis to support our claims. The paper ends with simulation studies and discussion of results.
基金supported by the National Natural Science Foundation of China (60775047)Hunan Provincial Natural Science Foundation of China (07JJ6111)
文摘Due to the mutual interference and sharing of wireless links in TDMA wireless sensor networks, conflicts will occur when data messages are transmitting between nodes. The broadcast scheduling problem (BSP) is aimed to schedule each node in different slot of fixed length frame at least once, and the objective of BSP is to seek for the optimal feasible solution, which has the shortest length of frame slots, as well as the maximum node transmission. A two-stage mixed algorithm based on a fuzzy Hopfield neural network is proposed to solve this BSP in wireless sensor network. In the first stage, a modified sequential vertex coloring algorithm is adopted to obtain a minimal TDMA frame length. In the second stage, the fuzzy Hopfleld network is utilized to maximize the channel utilization ratio. Experimental results, obtained from the running on three benchmark graphs, show that the algorithm can achieve better performance with shorter frame length and higher channel utilizing ratio than other exiting BSP solutions.
基金Projects(90820302,60805027)supported by the National Natural Science Foundation of ChinaProject(200805330005)supported by the Research Fund for the Doctoral Program of Higher Education,ChinaProject(2009FJ4030)supported by Academician Foundation of Hunan Province,China
文摘Multi-target tracking(MTT) is a research hotspot of wireless sensor networks at present.A self-organized dynamic cluster task allocation scheme is used to implement collaborative task allocation for MTT in WSN and a special cluster member(CM) node selection method is put forward in the scheme.An energy efficiency model was proposed under consideration of both energy consumption and remaining energy balance in the network.A tracking accuracy model based on area-sum principle was also presented through analyzing the localization accuracy of triangulation.Then,the two models mentioned above were combined to establish dynamic cluster member selection model for MTT where a comprehensive performance index function was designed to guide the CM node selection.This selection was fulfilled using genetic algorithm.Simulation results show that this method keeps both energy efficiency and tracking quality in optimal state,and also indicate the validity of genetic algorithm in implementing CM node selection.
基金Supported by National Natural Science Foundation of P. R. China (60373049) National Basic Research Program of P.R.China (2006CB 3030000)
文摘This paper introduces a parking management system based on a wireless sensor network developed by our group. The system consists of a large amount of parking space monitoring nodes, a few parking guiding nodes, a sink node and a management station. All the nodes exchange information with each other through wireless communication. The prototype of the parking management system has been implemented and the preliminary test results show that the performance of the system can satisfy the requirements of the application.
基金Supported in part by Science & Technology Department of Shanghai (05dz15004)
文摘In wireless sensor networks, target classification differs from that in centralized sensing systems because of the distributed detection, wireless communication and limited resources. We study the classification problem of moving vehicles in wireless sensor networks using acoustic signals emitted from vehicles. Three algorithms including wavelet decomposition, weighted k-nearest-neighbor and Dempster-Shafer theory are combined in this paper. Finally, we use real world experimental data to validate the classification methods. The result shows that wavelet based feature extraction method can extract stable features from acoustic signals. By fusion with Dempster's rule, the classification performance is improved.