并网型直流耦合制氢系统(grid-connected DC-coupled hydrogen production system,GDHPS)参与电网调节是能源转型战略下的热门趋势,其需在尽可能为电网提供频率支撑的同时确保电解槽间合理功率分配,而现有文献对该问题研究较少。为此,...并网型直流耦合制氢系统(grid-connected DC-coupled hydrogen production system,GDHPS)参与电网调节是能源转型战略下的热门趋势,其需在尽可能为电网提供频率支撑的同时确保电解槽间合理功率分配,而现有文献对该问题研究较少。为此,该文针对碱液电解槽(alkaline water electrolyzer,AWE),提出一种新型的GDHPS参与频率支撑的控制策略,该策略包含3点改进:一是提出自适应虚拟热敏电阻控制策略,通过控制系统定期更新AWE模型并结合其温度实时计算下垂系数;二是设计频率响应机制以快速响应电网频率变化;三是引入虚拟惯性响应机制提升系统动态性能。所提策略可在宽温度范围内实现AWE间完全分散控制与合理功率共享,同时为电网提供频率支撑,并通过Matlab/Simulink仿真平台及电解制氢实验平台验证有效性。展开更多
电化学分解水制氢是实现可持续、绿色制氢的重要途径,但由于阳极析氧反应(OER)缓慢的反应速率严重阻碍了全水解的效率。为从根本上解决此问题,利用低理论电位的硫离子氧化反应(SOR)取代OER,能极大的降低水电解的电压,提升水解效率,同时...电化学分解水制氢是实现可持续、绿色制氢的重要途径,但由于阳极析氧反应(OER)缓慢的反应速率严重阻碍了全水解的效率。为从根本上解决此问题,利用低理论电位的硫离子氧化反应(SOR)取代OER,能极大的降低水电解的电压,提升水解效率,同时在阳极获得增值产物。本工作通过共沉淀法成功制备出六氰钴酸钴(CoHCC)材料,并将CoHCC负载到泡沫镍(NF)基底上制备工作电极(CoHCC/NF),作为高效的硫离子氧化反应催化剂。在三电极体系下测试其SOR催化性能,CoHCC/NF仅需要0.31 V vs.RHE的低电压就能达到100 mA·cm^(-2)的电流密度,这远优于Co(OH)_(2)/NF和NF。此外,CoHCC/NF有最低的Tafel斜率(77mA·dec^(-1))和最小的电化学阻抗,且表现出良好的稳定性。同时,在两电极体系下模拟实际电解水制氢,测试表明新型耦合反应系统(SOR-HER)在达到100 mA·cm^(-2)电流密度时所需的电压远低于传统的全水解(OER-HER)制氢系统,本工作为超低能耗制氢和硫回收提供了一条有吸引力的途径。展开更多
文摘并网型直流耦合制氢系统(grid-connected DC-coupled hydrogen production system,GDHPS)参与电网调节是能源转型战略下的热门趋势,其需在尽可能为电网提供频率支撑的同时确保电解槽间合理功率分配,而现有文献对该问题研究较少。为此,该文针对碱液电解槽(alkaline water electrolyzer,AWE),提出一种新型的GDHPS参与频率支撑的控制策略,该策略包含3点改进:一是提出自适应虚拟热敏电阻控制策略,通过控制系统定期更新AWE模型并结合其温度实时计算下垂系数;二是设计频率响应机制以快速响应电网频率变化;三是引入虚拟惯性响应机制提升系统动态性能。所提策略可在宽温度范围内实现AWE间完全分散控制与合理功率共享,同时为电网提供频率支撑,并通过Matlab/Simulink仿真平台及电解制氢实验平台验证有效性。
文摘电化学分解水制氢是实现可持续、绿色制氢的重要途径,但由于阳极析氧反应(OER)缓慢的反应速率严重阻碍了全水解的效率。为从根本上解决此问题,利用低理论电位的硫离子氧化反应(SOR)取代OER,能极大的降低水电解的电压,提升水解效率,同时在阳极获得增值产物。本工作通过共沉淀法成功制备出六氰钴酸钴(CoHCC)材料,并将CoHCC负载到泡沫镍(NF)基底上制备工作电极(CoHCC/NF),作为高效的硫离子氧化反应催化剂。在三电极体系下测试其SOR催化性能,CoHCC/NF仅需要0.31 V vs.RHE的低电压就能达到100 mA·cm^(-2)的电流密度,这远优于Co(OH)_(2)/NF和NF。此外,CoHCC/NF有最低的Tafel斜率(77mA·dec^(-1))和最小的电化学阻抗,且表现出良好的稳定性。同时,在两电极体系下模拟实际电解水制氢,测试表明新型耦合反应系统(SOR-HER)在达到100 mA·cm^(-2)电流密度时所需的电压远低于传统的全水解(OER-HER)制氢系统,本工作为超低能耗制氢和硫回收提供了一条有吸引力的途径。