Using the data of regional seismic network, this paper analyzes the current faulting behaviors of different segments of the Anninghe-Zemuhe fault zone, western Sichuan, and identifies the likely risky segments for pot...Using the data of regional seismic network, this paper analyzes the current faulting behaviors of different segments of the Anninghe-Zemuhe fault zone, western Sichuan, and identifies the likely risky segments for potential large earthquakes. The authors map the probable asperities from the abnormally low b-value distribution, develop and employ a method for identifying current faulting behaviors of individual fault segment from the combinations of multiple seismicity parameter values, and make an effort to estimate the average recurrence intervals of character-istic earthquakes by using the parameters of magnitude-frequency relationship of the asperity segment. The result suggests that the studied fault zone contains 5 segments of different current faulting behaviors. Among them, the Mianning-Xichang segment of the Anninghe fault has been locked under high stress, its central part is probably an asperity with a relatively large scale. The Xichang-Puge segment of the Zemuhe fault displays very low seismicity under low stress. Both the locked segment and the low-seismicity segment can be outlined on the across-profile of relocated hypocenter depths. The Mianning-Xichang segment is identified to be the one with potential large earth-quake risk, for which the average recurrence interval between the latest M = 6.7 earthquake in 1952 and the next characteristic event is estimated to be 55 to 67 years, and the magnitude of the potential earthquake between 7.0 and 7.5. Also, it has been preliminarily suggested that for a certain fault segment, its faulting behaviors may change and evolve with time gradually.展开更多
Based on schematically formulation of the vibrations induced by moving trains, this paper analyses the waveforms along the Datong-Qinhuangdao railroad in Northern China recorded in the suburban Huairou district of Bei...Based on schematically formulation of the vibrations induced by moving trains, this paper analyses the waveforms along the Datong-Qinhuangdao railroad in Northern China recorded in the suburban Huairou district of Beijing on March 8, 2003. It is illustrated that vibrations induced by train, except traditional recognized noises and interfer- ence effects, could be used as a seismic source to detect crustal structures with its advantage of abundant frequency spectrum, repeatability and no additional harm to the environment. It will bring lights to the traditional exploration seismology with the further studies of signal processing and interpretation methods, and related models and new observing systems.展开更多
We apply the forward modeling algorithm constituted by the convolutional Forsyte polynomial differentiator pro-posed by former worker to seismic wave simulation of complex heterogeneous media and compare the efficienc...We apply the forward modeling algorithm constituted by the convolutional Forsyte polynomial differentiator pro-posed by former worker to seismic wave simulation of complex heterogeneous media and compare the efficiency and accuracy between this method and other seismic simulation methods such as finite difference and pseudospec-tral method. Numerical experiments demonstrate that the algorithm constituted by convolutional Forsyte polyno-mial differentiator has high efficiency and accuracy and needs less computational resources, so it is a numerical modeling method with much potential.展开更多
In this paper, we calculated the seismic pattern of instrumental recorded small and moderate earthquakes near the epicenter of the 1303 Hongtong M=8 earthquake, Shanxi Province. According to the spatial distribution o...In this paper, we calculated the seismic pattern of instrumental recorded small and moderate earthquakes near the epicenter of the 1303 Hongtong M=8 earthquake, Shanxi Province. According to the spatial distribution of small and moderate earthquakes, 6 seismic dense zones are delineated. Temporal distribution of ML2 earthquakes since 1970 in each seismic dense zone has been analyzed. Based on temporal distribution characteristics and historical earthquake activity, three types of seismicities are proposed. The relationship between seismic types and crustal medium is analyzed. The mechanism of three types is discussed. Finity of strong earthquake recurrence is pro-posed. Seismic hazard in mid-long term and diversity of earthquake disaster in Shanxi seismic belt are discussed.展开更多
Seismic safety evaluation is a basic work for determining the seismic resistance requirements of major construc-tion projects. The effect, especially the economic effect of the seismic safety evaluation has been gener...Seismic safety evaluation is a basic work for determining the seismic resistance requirements of major construc-tion projects. The effect, especially the economic effect of the seismic safety evaluation has been generally con-cerned. The paper gives a model for estimating the effect of seismic safety evaluation and calculates roughly the economic effect of seismic safety evaluation with some examples.展开更多
The research on the rock burst prediction was made on the basis of seismology,rock mechanics and the data from Dongguashan Copper Mine(DCM) ,the deepest metal mine in China.The seismic responses to mining in DCM were ...The research on the rock burst prediction was made on the basis of seismology,rock mechanics and the data from Dongguashan Copper Mine(DCM) ,the deepest metal mine in China.The seismic responses to mining in DCM were investigated through the analyses of the spatio-temporal distribution of hypocenters,apparent stress and displacement of seismic events,and the process of the generation of hazardous seismicity in DCM was studied in the framework of the theory of asperity in the seismic source mechanism.A method of locating areas with hazardous seismicity and a conceptual model of hazardous seismic nucleation in DCM were proposed.A criterion of rockburst prediction was analyzed theoretically in the framework of unstable failure theories,and consequently,the rate of change in the ratio of the seismic stiffness of rock in a seismic nucleation area to that in surrounding area,dS/dt,is defined as an index of the rockburst prediction.The possibility of a rockburst will increase if dS/dt>0,and the possibility of rock burst will decrease if dS/dt<0.The correctness of these methods is demonstrated by analyses of rock failure cases in DCM.展开更多
Altun fault is regarded as a large\|scale sinistral strike\|slip fault, it is composed of several faults with the different character, and there is a special geological structure in the fault belt, and they constitute...Altun fault is regarded as a large\|scale sinistral strike\|slip fault, it is composed of several faults with the different character, and there is a special geological structure in the fault belt, and they constitute the northwestern margin fault belt of the Qinghai\|Tibetan plateau. In order to investigate the deep crust structure in the Altun region, layers which Tarim lithosphere subducted beneath the Qinghai\|Tibetan plateau, the forward structure of the subduction plate and the scale of the plate subduction, a deep seismic reflection profile was designed. Data collection work of the deep seismic reflection profile across Altun fault was completed during 24/8/1999 to 25/9/1999. The profile locates in Qiemo county, Xinjiang Uygur Autonomous Region, the southern end of the profile stretches into Altun Mountains, the northern end locates in the Tarim desert margin. The profile is nearly SN trending and crosses the main Altun fault. The profile totally is 145km long, time record is 30 seconds, the smallest explosive amount is 72~100kg, the biggest explosive amount reaches 200~300kg, the explosive distance is 800m, and detectors are laid at a 50m distance.展开更多
The Qinghai—Tibet plateau and its surrounding areas including Indian subcontinent, Xinjiang, Mongolia, is a largest lithosphere convergence place in the world, which characterized by continent\|continent collision wi...The Qinghai—Tibet plateau and its surrounding areas including Indian subcontinent, Xinjiang, Mongolia, is a largest lithosphere convergence place in the world, which characterized by continent\|continent collision with a thick crust and lithosphere. The high resolution seismic surface wave tomographic inversion has been conducted for studying the 3D velocity structure of crust and upper mantle in those areas. The seismic surface waveform data are from the archives of the CDSN, GSN and GEOSCOPE. About 2400 long period surface waveform recordings are available for both dispersion and waveform tomographic inversion. The block inversion by grid 1°×1°in Qinghai—Tibet plateau and 2°×2°in the surrounding areas were adapted. The resulting maps show the high resolution 3D shear wave velocity variation from earth’s surface to 400km depth.展开更多
In order to evaluate the seismic stability of reinforced soil walls against bearing capacity failure,the seismic safety factor of reinforced soil walls was determined by using pseudo-dynamic method,and calculated by c...In order to evaluate the seismic stability of reinforced soil walls against bearing capacity failure,the seismic safety factor of reinforced soil walls was determined by using pseudo-dynamic method,and calculated by considering different parameters,such as horizontal and vertical seismic acceleration coefficients,ratio of reinforcement length to wall height,back fill friction angle,foundation soil friction angle,soil reinforcement interface friction angle and surcharge.The parametric study shows that the seismic safety factor increases by 24-fold when the foundation soil friction angle varies from 25°to 45°,and increases by 2-fold when the soil reinforcement interface friction angle varies from 0 to 30°.That is to say,the bigger values the foundation soil and/or soil reinforcement interface friction angles have,the safer the reinforced soil walls become in the seismic design.The results were also compared with those obtained from pseudo-static method.It is found that there is a higher value of the safety factor by the present work.展开更多
With regard to blasting in deep rock masses,it is commonly thought that an increase in the in-situ stress will change the blast-induced rock crack propagation and ultimately affect rock fragmentation.However,little at...With regard to blasting in deep rock masses,it is commonly thought that an increase in the in-situ stress will change the blast-induced rock crack propagation and ultimately affect rock fragmentation.However,little attention has been given to the change in seismic wave radiation when the fractured zone changes with the in-situ stress.In this study,the influences of in-situ stress on blast-induced rock fracture and seismic wave radiation are numerically investigated by a coupled SPH-FEM simulation method.The results show that the change in blast-induced rock fracture with in-situ stress has a considerable effect on the seismic wave energy and composition.As the in-situ stress level increases,the size of the fractured zone is significantly reduced,and more explosion energy is transformed into seismic energy.A reduction in the size of the fractured zone(seismic wave source zone)results in a higher frequency content of the seismic waves.In a nonhydrostatic in-situ stress field,blast-induced cracks are most suppressed in the direction of the minimum in-situ stress,and thus the seismic waves generated in this direction have the highest energy density.In addition to P-waves,Swaves are also generated when a circular explosive is detonated in a nonhydrostatic in-situ stress field.The S-waves result from the asymmetrical release of rock strain energy due to the anisotropic blast-induced fracture pattern.展开更多
Seismic bearing capacity factors of a strip footing placed on soil slope were determined with both associated and nonassociated flow rules. Quasi-static representation of earthquake effects using a seismic coefficient...Seismic bearing capacity factors of a strip footing placed on soil slope were determined with both associated and nonassociated flow rules. Quasi-static representation of earthquake effects using a seismic coefficient concept was adopted for seismic bearing capacity calculations. A multi-wedge translational failure mechanism was used to obtain the seismic bearing capacity factors for different seismic coefficients and various inclined angles. Employing the associated flow rule, numerical results were compared with the published solutions. For bearing capacity factors related to cohesion and equivalent surcharge load, the maximum difference approximates 0.1%. However, the difference of bearing capacity factor related to unit weight is larger. With the two flow rules, the seismic bearing capacity factors were presented in the form of design charts for practical use. The results show that seismic bearing capacity factors related to the cohesion, the equivalent surcharge load and the unit weight increase greatly as the dilatancy angle increases, and that the nonassociated flow rule has important influences on the seismic bearing capacity.展开更多
Seismic failure mechanisms were investigated for soil slopes subjected to strip load with upper bound method of limit analysis and finite difference method of numerical simulation,considering the influence of associat...Seismic failure mechanisms were investigated for soil slopes subjected to strip load with upper bound method of limit analysis and finite difference method of numerical simulation,considering the influence of associated and nonassociated flow rules.Quasi-static representation of soil inertia effects using a seismic coefficient concept was adopted for seismic failure analysis.Numerical study was conducted to investigate the influences of dilative angle and earthquake on the seismic failure mechanisms for the loaded slope,and the failure mechanisms for different dilation angles were compared.The results show that dilation angle has influences on the seismic failure surfaces,that seismic maximum displacement vector decreases as the dilation angle increases,and that seismic maximum shear strain rate decreases as the dilation angle increases.展开更多
The required reinforcement force to prevent instability and the yield acceleration of reinforced slopes are computed under seismic loading by applying the kinematic approach of limit analysis in conjunction with the p...The required reinforcement force to prevent instability and the yield acceleration of reinforced slopes are computed under seismic loading by applying the kinematic approach of limit analysis in conjunction with the pseudo-dynamic method for a wide range of soil cohesion, friction angle, dilation angle and horizontal and vertical seismic coefficients. Each parameter threatening the stability of the slope enhances the magnitude of the required reinforcement force and vice versa. Moreover, the yield acceleration increases with the increase in soil shear strength parameters but decreases with the increase in the slope angle. The comparison of the present work with some of the available solutions in the literatures shows a reasonable agreement.展开更多
A fiber Bragg grating (FBG) geophone and a surface seismic wave-based algorithm for detecting the direction of arrival (DOA) are described. The operational principle of FBG geophone is introduced and illustrated with ...A fiber Bragg grating (FBG) geophone and a surface seismic wave-based algorithm for detecting the direction of arrival (DOA) are described. The operational principle of FBG geophone is introduced and illustrated with systematic experimental data, demonstrating an improved FBG geophone with many advantages over the conventional geophones. An innovative, robust, and simple algorithm is developed for obtaining the bearing information on the seismic events, such as people walking, or vehicles moving. Such DOA estimate is based on the interactions and projections of surface-propagating seismic waves generated by the moving personnel or vehicles with a single tri-axial seismic sensor based on FBGs. Of particular interest is the case when the distance between the source of the seismic wave and the detector is less than or comparable to one wavelength (less than 100 m), corresponding to near-field detection, where an effective method of DOA finding lacks.展开更多
In this paper, we consider the analysis, implementation, and application of wideband sources using both seismic and acoustic sensors. We use the approximate maximum likelihood (AML) algorithm to perform acoustic direc...In this paper, we consider the analysis, implementation, and application of wideband sources using both seismic and acoustic sensors. We use the approximate maximum likelihood (AML) algorithm to perform acoustic direction of arrival (DOA). For non-uniform noise spectra, whitening filtering was applied to the received acoustic signals before the AML operation. For short-range seismic DOA applications, one method was based on eigen-decomposition of the covariance matrix and a second method was based on surface wave analysis. Two well-known optimization schemes were used to estimate the source locations from the estimated DOAs at sensors of known locations. Experimental estimation of the DOAs and resulting localizations using the acoustic and seismic signals generated by striking a heavy metal plate by a hammer were reported.展开更多
基金Chinese Joint Seismological Science Foundation (102002).
文摘Using the data of regional seismic network, this paper analyzes the current faulting behaviors of different segments of the Anninghe-Zemuhe fault zone, western Sichuan, and identifies the likely risky segments for potential large earthquakes. The authors map the probable asperities from the abnormally low b-value distribution, develop and employ a method for identifying current faulting behaviors of individual fault segment from the combinations of multiple seismicity parameter values, and make an effort to estimate the average recurrence intervals of character-istic earthquakes by using the parameters of magnitude-frequency relationship of the asperity segment. The result suggests that the studied fault zone contains 5 segments of different current faulting behaviors. Among them, the Mianning-Xichang segment of the Anninghe fault has been locked under high stress, its central part is probably an asperity with a relatively large scale. The Xichang-Puge segment of the Zemuhe fault displays very low seismicity under low stress. Both the locked segment and the low-seismicity segment can be outlined on the across-profile of relocated hypocenter depths. The Mianning-Xichang segment is identified to be the one with potential large earth-quake risk, for which the average recurrence interval between the latest M = 6.7 earthquake in 1952 and the next characteristic event is estimated to be 55 to 67 years, and the magnitude of the potential earthquake between 7.0 and 7.5. Also, it has been preliminarily suggested that for a certain fault segment, its faulting behaviors may change and evolve with time gradually.
基金National Natural Science Foundations of China (No. 40234038 and 40174014).
文摘Based on schematically formulation of the vibrations induced by moving trains, this paper analyses the waveforms along the Datong-Qinhuangdao railroad in Northern China recorded in the suburban Huairou district of Beijing on March 8, 2003. It is illustrated that vibrations induced by train, except traditional recognized noises and interfer- ence effects, could be used as a seismic source to detect crustal structures with its advantage of abundant frequency spectrum, repeatability and no additional harm to the environment. It will bring lights to the traditional exploration seismology with the further studies of signal processing and interpretation methods, and related models and new observing systems.
基金Open Fund of State Key Laboratory of Geological Processes and Mineral Resources, China University of Geo-sciences (GPMR0750)National Natural Science Foundation of China (40437018)
文摘We apply the forward modeling algorithm constituted by the convolutional Forsyte polynomial differentiator pro-posed by former worker to seismic wave simulation of complex heterogeneous media and compare the efficiency and accuracy between this method and other seismic simulation methods such as finite difference and pseudospec-tral method. Numerical experiments demonstrate that the algorithm constituted by convolutional Forsyte polyno-mial differentiator has high efficiency and accuracy and needs less computational resources, so it is a numerical modeling method with much potential.
基金Key Science Research Project (100501-05-09) from China Earthquake Administration during the tenth Five-year Plan.
文摘In this paper, we calculated the seismic pattern of instrumental recorded small and moderate earthquakes near the epicenter of the 1303 Hongtong M=8 earthquake, Shanxi Province. According to the spatial distribution of small and moderate earthquakes, 6 seismic dense zones are delineated. Temporal distribution of ML2 earthquakes since 1970 in each seismic dense zone has been analyzed. Based on temporal distribution characteristics and historical earthquake activity, three types of seismicities are proposed. The relationship between seismic types and crustal medium is analyzed. The mechanism of three types is discussed. Finity of strong earthquake recurrence is pro-posed. Seismic hazard in mid-long term and diversity of earthquake disaster in Shanxi seismic belt are discussed.
文摘Seismic safety evaluation is a basic work for determining the seismic resistance requirements of major construc-tion projects. The effect, especially the economic effect of the seismic safety evaluation has been generally con-cerned. The paper gives a model for estimating the effect of seismic safety evaluation and calculates roughly the economic effect of seismic safety evaluation with some examples.
基金Project(2010CB732004) supported by the National Basic Research Program of ChinaProject(50490274) supported by the National Natural Science Foundation of China
文摘The research on the rock burst prediction was made on the basis of seismology,rock mechanics and the data from Dongguashan Copper Mine(DCM) ,the deepest metal mine in China.The seismic responses to mining in DCM were investigated through the analyses of the spatio-temporal distribution of hypocenters,apparent stress and displacement of seismic events,and the process of the generation of hazardous seismicity in DCM was studied in the framework of the theory of asperity in the seismic source mechanism.A method of locating areas with hazardous seismicity and a conceptual model of hazardous seismic nucleation in DCM were proposed.A criterion of rockburst prediction was analyzed theoretically in the framework of unstable failure theories,and consequently,the rate of change in the ratio of the seismic stiffness of rock in a seismic nucleation area to that in surrounding area,dS/dt,is defined as an index of the rockburst prediction.The possibility of a rockburst will increase if dS/dt>0,and the possibility of rock burst will decrease if dS/dt<0.The correctness of these methods is demonstrated by analyses of rock failure cases in DCM.
文摘Altun fault is regarded as a large\|scale sinistral strike\|slip fault, it is composed of several faults with the different character, and there is a special geological structure in the fault belt, and they constitute the northwestern margin fault belt of the Qinghai\|Tibetan plateau. In order to investigate the deep crust structure in the Altun region, layers which Tarim lithosphere subducted beneath the Qinghai\|Tibetan plateau, the forward structure of the subduction plate and the scale of the plate subduction, a deep seismic reflection profile was designed. Data collection work of the deep seismic reflection profile across Altun fault was completed during 24/8/1999 to 25/9/1999. The profile locates in Qiemo county, Xinjiang Uygur Autonomous Region, the southern end of the profile stretches into Altun Mountains, the northern end locates in the Tarim desert margin. The profile is nearly SN trending and crosses the main Altun fault. The profile totally is 145km long, time record is 30 seconds, the smallest explosive amount is 72~100kg, the biggest explosive amount reaches 200~300kg, the explosive distance is 800m, and detectors are laid at a 50m distance.
文摘The Qinghai—Tibet plateau and its surrounding areas including Indian subcontinent, Xinjiang, Mongolia, is a largest lithosphere convergence place in the world, which characterized by continent\|continent collision with a thick crust and lithosphere. The high resolution seismic surface wave tomographic inversion has been conducted for studying the 3D velocity structure of crust and upper mantle in those areas. The seismic surface waveform data are from the archives of the CDSN, GSN and GEOSCOPE. About 2400 long period surface waveform recordings are available for both dispersion and waveform tomographic inversion. The block inversion by grid 1°×1°in Qinghai—Tibet plateau and 2°×2°in the surrounding areas were adapted. The resulting maps show the high resolution 3D shear wave velocity variation from earth’s surface to 400km depth.
文摘In order to evaluate the seismic stability of reinforced soil walls against bearing capacity failure,the seismic safety factor of reinforced soil walls was determined by using pseudo-dynamic method,and calculated by considering different parameters,such as horizontal and vertical seismic acceleration coefficients,ratio of reinforcement length to wall height,back fill friction angle,foundation soil friction angle,soil reinforcement interface friction angle and surcharge.The parametric study shows that the seismic safety factor increases by 24-fold when the foundation soil friction angle varies from 25°to 45°,and increases by 2-fold when the soil reinforcement interface friction angle varies from 0 to 30°.That is to say,the bigger values the foundation soil and/or soil reinforcement interface friction angles have,the safer the reinforced soil walls become in the seismic design.The results were also compared with those obtained from pseudo-static method.It is found that there is a higher value of the safety factor by the present work.
基金Projects(51969015,U1765207)supported by the National Natural Science Foundation of ChinaProjects(20192ACB21019,20181BAB206047)supported by the Natural Science Foundation of Jiangxi Province,China。
文摘With regard to blasting in deep rock masses,it is commonly thought that an increase in the in-situ stress will change the blast-induced rock crack propagation and ultimately affect rock fragmentation.However,little attention has been given to the change in seismic wave radiation when the fractured zone changes with the in-situ stress.In this study,the influences of in-situ stress on blast-induced rock fracture and seismic wave radiation are numerically investigated by a coupled SPH-FEM simulation method.The results show that the change in blast-induced rock fracture with in-situ stress has a considerable effect on the seismic wave energy and composition.As the in-situ stress level increases,the size of the fractured zone is significantly reduced,and more explosion energy is transformed into seismic energy.A reduction in the size of the fractured zone(seismic wave source zone)results in a higher frequency content of the seismic waves.In a nonhydrostatic in-situ stress field,blast-induced cracks are most suppressed in the direction of the minimum in-situ stress,and thus the seismic waves generated in this direction have the highest energy density.In addition to P-waves,Swaves are also generated when a circular explosive is detonated in a nonhydrostatic in-situ stress field.The S-waves result from the asymmetrical release of rock strain energy due to the anisotropic blast-induced fracture pattern.
基金Project(200550) supported by the Foundation for the Author of National Excellent Doctoral Dissertation of ChinaProject(05-0686) supported by the Program for New Century Excellent Talents in University
文摘Seismic bearing capacity factors of a strip footing placed on soil slope were determined with both associated and nonassociated flow rules. Quasi-static representation of earthquake effects using a seismic coefficient concept was adopted for seismic bearing capacity calculations. A multi-wedge translational failure mechanism was used to obtain the seismic bearing capacity factors for different seismic coefficients and various inclined angles. Employing the associated flow rule, numerical results were compared with the published solutions. For bearing capacity factors related to cohesion and equivalent surcharge load, the maximum difference approximates 0.1%. However, the difference of bearing capacity factor related to unit weight is larger. With the two flow rules, the seismic bearing capacity factors were presented in the form of design charts for practical use. The results show that seismic bearing capacity factors related to the cohesion, the equivalent surcharge load and the unit weight increase greatly as the dilatancy angle increases, and that the nonassociated flow rule has important influences on the seismic bearing capacity.
基金Project(200550) supported by the Foundation for the Author of National Excellent Doctoral Dissertation of ChinaProject(200631878557) supported by the West Traffic of Science and Technology,China
文摘Seismic failure mechanisms were investigated for soil slopes subjected to strip load with upper bound method of limit analysis and finite difference method of numerical simulation,considering the influence of associated and nonassociated flow rules.Quasi-static representation of soil inertia effects using a seismic coefficient concept was adopted for seismic failure analysis.Numerical study was conducted to investigate the influences of dilative angle and earthquake on the seismic failure mechanisms for the loaded slope,and the failure mechanisms for different dilation angles were compared.The results show that dilation angle has influences on the seismic failure surfaces,that seismic maximum displacement vector decreases as the dilation angle increases,and that seismic maximum shear strain rate decreases as the dilation angle increases.
文摘The required reinforcement force to prevent instability and the yield acceleration of reinforced slopes are computed under seismic loading by applying the kinematic approach of limit analysis in conjunction with the pseudo-dynamic method for a wide range of soil cohesion, friction angle, dilation angle and horizontal and vertical seismic coefficients. Each parameter threatening the stability of the slope enhances the magnitude of the required reinforcement force and vice versa. Moreover, the yield acceleration increases with the increase in soil shear strength parameters but decreases with the increase in the slope angle. The comparison of the present work with some of the available solutions in the literatures shows a reasonable agreement.
基金This project was funded in part bythe U . S . Army
文摘A fiber Bragg grating (FBG) geophone and a surface seismic wave-based algorithm for detecting the direction of arrival (DOA) are described. The operational principle of FBG geophone is introduced and illustrated with systematic experimental data, demonstrating an improved FBG geophone with many advantages over the conventional geophones. An innovative, robust, and simple algorithm is developed for obtaining the bearing information on the seismic events, such as people walking, or vehicles moving. Such DOA estimate is based on the interactions and projections of surface-propagating seismic waves generated by the moving personnel or vehicles with a single tri-axial seismic sensor based on FBGs. Of particular interest is the case when the distance between the source of the seismic wave and the detector is less than or comparable to one wavelength (less than 100 m), corresponding to near-field detection, where an effective method of DOA finding lacks.
基金Supported by NSF CENS program (CCR-0121778), NSF (EF-0410438), and ST Microelectronics in USA.
文摘In this paper, we consider the analysis, implementation, and application of wideband sources using both seismic and acoustic sensors. We use the approximate maximum likelihood (AML) algorithm to perform acoustic direction of arrival (DOA). For non-uniform noise spectra, whitening filtering was applied to the received acoustic signals before the AML operation. For short-range seismic DOA applications, one method was based on eigen-decomposition of the covariance matrix and a second method was based on surface wave analysis. Two well-known optimization schemes were used to estimate the source locations from the estimated DOAs at sensors of known locations. Experimental estimation of the DOAs and resulting localizations using the acoustic and seismic signals generated by striking a heavy metal plate by a hammer were reported.