The wide-field electromagnetic method is widely used in hydrocarbon exploration,mineral deposit detection,and geological disaster prediction.However,apparent resistivity and normalized field amplitude exceeding 2048 H...The wide-field electromagnetic method is widely used in hydrocarbon exploration,mineral deposit detection,and geological disaster prediction.However,apparent resistivity and normalized field amplitude exceeding 2048 Hz often exhibit upward warping in data,making geophysical inversion and interpretation challenging.The cumulative error of the crystal oscillator in signal transmission and acquisition contributes to an upturned apparent resistivity curve.To address this,a high-frequency information extraction method is proposed based on time-domain signal reconstruction,which helps to record a complete current data sequence;moreover,it helps estimate the crystal oscillator error for the transmitted signal.Considering the recorded error,a received signal was corrected using a set of reconstruction algorithms.After processing,the high-frequency component of the wide-field electromagnetic data was not upturned,while accurate high-frequency information was extracted from the signal.Therefore,the proposed method helped effectively extract high-frequency components of all wide-field electromagnetic data.展开更多
光学成像技术被广泛应用于军事、航天等领域,随着加工技术的发展,宽视场高分辨率成像成为主要应用需求。以反远摄结构作为基础,基于赛德尔像差理论,通过光阑光线入射角度控制约束,建立了一种宽视场高分辨率光学系统的初始结构。同时,以...光学成像技术被广泛应用于军事、航天等领域,随着加工技术的发展,宽视场高分辨率成像成为主要应用需求。以反远摄结构作为基础,基于赛德尔像差理论,通过光阑光线入射角度控制约束,建立了一种宽视场高分辨率光学系统的初始结构。同时,以高阶像差约束控制作为进一步优化方向,设计了一种单孔径宽视场高分辨率成像光学系统。设计的系统视场角为70°,各视场调制传递函数(Modulation Transfer Function,MTF)曲线接近衍射极限,中心视场衍射MTF在550 lp/mm处优于0.2,系统成像质量良好,各项指标满足设计要求,实现了宽视场、高分辨率设计。展开更多
基金Project(42004056)supported by the National Natural Science Foundation of ChinaProject(ZR2020QD052)supported by the Natural Science Foundation of Shandong Province,ChinaProject(2019YFC0604902)supported by the National Key Research and Development Program of China。
文摘The wide-field electromagnetic method is widely used in hydrocarbon exploration,mineral deposit detection,and geological disaster prediction.However,apparent resistivity and normalized field amplitude exceeding 2048 Hz often exhibit upward warping in data,making geophysical inversion and interpretation challenging.The cumulative error of the crystal oscillator in signal transmission and acquisition contributes to an upturned apparent resistivity curve.To address this,a high-frequency information extraction method is proposed based on time-domain signal reconstruction,which helps to record a complete current data sequence;moreover,it helps estimate the crystal oscillator error for the transmitted signal.Considering the recorded error,a received signal was corrected using a set of reconstruction algorithms.After processing,the high-frequency component of the wide-field electromagnetic data was not upturned,while accurate high-frequency information was extracted from the signal.Therefore,the proposed method helped effectively extract high-frequency components of all wide-field electromagnetic data.
文摘光学成像技术被广泛应用于军事、航天等领域,随着加工技术的发展,宽视场高分辨率成像成为主要应用需求。以反远摄结构作为基础,基于赛德尔像差理论,通过光阑光线入射角度控制约束,建立了一种宽视场高分辨率光学系统的初始结构。同时,以高阶像差约束控制作为进一步优化方向,设计了一种单孔径宽视场高分辨率成像光学系统。设计的系统视场角为70°,各视场调制传递函数(Modulation Transfer Function,MTF)曲线接近衍射极限,中心视场衍射MTF在550 lp/mm处优于0.2,系统成像质量良好,各项指标满足设计要求,实现了宽视场、高分辨率设计。