期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Factors and detection capability of look-ahead logging while drilling (LWD) tools
1
作者 Ran-Ming Liu Wen-Xiu Zhang +3 位作者 Wen-Xuan Chen Peng-Fei Liang Xing-Han Li Zhi-Xiong Tong 《Petroleum Science》 2025年第2期850-867,共18页
Electromagnetic technology used in logging while drilling(LWD) provides the resistivity distribution around a borehole within a range of several tens of meters.However,a blind zone appears in front of the drill bit wh... Electromagnetic technology used in logging while drilling(LWD) provides the resistivity distribution around a borehole within a range of several tens of meters.However,a blind zone appears in front of the drill bit when operating in high-angle wells,limiting the ability to detect formations ahead of the drill bit.Look-ahead technology addresses this issue and substantially enhances the proactive capability of geological directional drilling.In this study,we examine the detection capabilities of various component combinations of magnetic dipole antenna.Based on the sensitivity of each component to the axial information,a coaxial component is selected as a boundary indicator.We investigate the impact of various factors,such as frequency and transmitter and receiver(TR) distance,under different geological models.This study proposes 5 and 20 kHz as appropriate frequencies,and 10-14 and 12-17 m as suitable TR distance combinations.The accuracy of the numerical calculation results is verified via air-sea testing,confirming the instrument's detection capability.A test model that eliminated the influence of environmental factors and seawater depth is developed.The results have demonstrated that the tool can recognize the interface between layers up to 21.6 m ahead.It provides a validation idea for the design of new instruments as well as the validation of detection capabilities. 展开更多
关键词 Logging while drilling LOOK-AHEAD Deep reading Air-sea test Boundary detection
在线阅读 下载PDF
Numerical simulation and dimension reduction analysis of electromagnetic logging while drilling of horizontal wells in complex structures 被引量:7
2
作者 Zhen-Guan Wu Shao-Gui Deng +5 位作者 Xu-Quan He Runren Zhang Yi-Ren Fan Xi-Yong Yuan Yi-Zhi Wu Qing Huo Liu 《Petroleum Science》 SCIE CAS CSCD 2020年第3期645-657,共13页
Electromagnetic logging while drilling(LWD)is one of the key technologies of the geosteering and formation evaluation for high-angle and horizontal wells.In this paper,we solve the dipole source-generated magnetic/ele... Electromagnetic logging while drilling(LWD)is one of the key technologies of the geosteering and formation evaluation for high-angle and horizontal wells.In this paper,we solve the dipole source-generated magnetic/electric fields in 2D formations efficiently by the 2.5D finite diff erence method.Particularly,by leveraging the field’s rapid attenuation in spectral domain,we propose truncated Gauss–Hermite quadrature,which is several tens of times faster than traditional inverse fast Fourier transform.By applying the algorithm to the LWD modeling under complex formations,e.g.,folds,fault and sandstone pinch-outs,we analyze the feasibility of the dimension reduction from 2D to 1D.For the formations with smooth lateral changes,like folds,the simplified 1D model’s results agree well with the true responses,which indicate that the 1D simplification with sliding window is feasible.However,for the formation structures with drastic rock properties changes and sharp boundaries,for instance,faults and sandstone pinch-outs,the simplified 1D model will lead to large errors and,therefore,2.5D algorithms should be applied to ensure the accuracy. 展开更多
关键词 Complex formation structures Horizontal wells Electromagnetic logging while drilling 2.5D algorithm-Model simplification
在线阅读 下载PDF
Numerical analysis of the effects of downhole dynamic conditions on formation testing while drilling 被引量:2
3
作者 DI Dejia TAO Guo +2 位作者 WANG Bing CHEN Xu SUN Jiming 《Petroleum Science》 SCIE CAS CSCD 2014年第3期391-400,共10页
Formation testing while drilling is an innovative technique that is replacing conventional pressure testing in which the fluid sampling is conducted in a relatively short time following the drilling. At this time, mud... Formation testing while drilling is an innovative technique that is replacing conventional pressure testing in which the fluid sampling is conducted in a relatively short time following the drilling. At this time, mud invasion has just started, mudcake has not formed entirely and the formation pressure is not stable. Therefore, it is important to study the influence of the downhole dynamic environment on pressure testing and fluid sampling. This paper applies an oil-water two phase finite element model to study the influence of mudcake quality and mud filtrate invasion on supercharge pressure, pretest and sampling in the reservoirs of different permeability. However, the study is only for the cases with water based mud in the wellbore. The results illustrate that the mudcake quality has a significant influence on the supercharge pressure and fluid sampling, while the level of mud filtrate invasion has a strong impact on pressure testing and sampling. In addition, in-situ formation pressure testing is more difficult in low permeability reservoirs as the mud filtrate invasion is deeper and therefore degrades the quality of fluid sampling. Finally, a field example from an oil field on the Alaskan North Slope is presented to validate the numerical studies of the effects of downhole dynamic conditions on formation testing while drilling. 展开更多
关键词 Formation testing while drilling formation supercharge pressure testing fluid sampling finite element method mudcake filtrate invasion
在线阅读 下载PDF
Processing of measurement while drilling data for rock mass characterization 被引量:7
4
作者 Babaei Khorzoughi Mohammad Hall Robert 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第6期989-994,共6页
The information extracted from monitoring of rotary blasthole drills helps to optimize the overall mining operation. Rock hardness, drillability, blastability and specific energy of drilling are examples of parameters... The information extracted from monitoring of rotary blasthole drills helps to optimize the overall mining operation. Rock hardness, drillability, blastability and specific energy of drilling are examples of parameters that have been estimated in the past using measurement while drilling techniques. In order to be able to properly utilize measurement while drilling techniques, it is important to properly collect, analyze and interpret extracted data. This paper deals with processing of measurement while drilling data such as rate of penetration, rotary speed, rotary torque and pulldown force collected from rotary blasthole drills.Different methods are discussed to calculate a true rate of penetration which is the most important monitored drill variable for use in rock mass characterization. Then specific energy of drilling is defined and calculated based on electrical and mechanical inputs and the results are compared. The results show that specific energy of drilling can be estimated using the drill's primary drive systems' electrical responses with good accuracy when compared to values based on mechanical inputs. 展开更多
关键词 Measurement while drilling Rotary blasthole drill Specific energy Rate of penetration
在线阅读 下载PDF
Response analyses on the drill-string channel for logging while drilling telemetry
5
作者 Ao-Song Zhao Xiao He +1 位作者 Hao Chen Xiu-Ming Wang 《Petroleum Science》 SCIE EI CSCD 2023年第5期2796-2808,共13页
Downhole acoustic telemetry(DAT),using a long drill string with periodical structures as the channel,is a prospective technology for improving the transmission rate of logging while drilling(LWD)data.Previous studies ... Downhole acoustic telemetry(DAT),using a long drill string with periodical structures as the channel,is a prospective technology for improving the transmission rate of logging while drilling(LWD)data.Previous studies only focused on the acoustic property of a free drill string and neglected the coupling between pipes and fluid-filled boreholes.In addition to the drill-string waves,a series of fluid waves are recorded in the DAT channel,which has not been investigated yet.Unpredictable channel characteristics result in lower transmission rates and stability than expected.Therefore,a more realistic channel model is needed considering the fluid-filled borehole.In this paper,we propose a hybrid modeling method to investigate the response characteristics of the DAT channel.By combining the axial wavenumbers and excitation functions of mode waves in radially layered LWD structures,the channel model is approximated to the 1-D propagation,which considers transmission,reflection,and interconversion of the drillstring and fluid waves.The proposed 1-D approximation has been well validated by comparing the 2-D finite-difference modeling.It is revealed that the transmitted and converted fluid waves interfere with the drill-string wave,which characterizes the DAT channel as a particular coherent multi-path channel.When a fluid-filled borehole surrounds the drill string,the channel responses exhibit considerable delay as well as strong frequency selectivity in amplitude and phase.These new findings suggest that the complexity of the channel response has been underestimated in the past,and therefore channel measurements on the ground are unreliable.To address these channel characteristics,we apply a noncoherent demodulation strategy.The transmission rate for synthetic data reaches 15 bps in a 94.5 m long channel,indicating that the acoustic telemetry is promising to break the low-speed limitation of mud-pulse telemetry. 展开更多
关键词 Logging while drilling Borehole geophysics Downhole acoustic telemetry Channel modeling Frequency selectivity
在线阅读 下载PDF
ELF-EM Signal Processing While Drilling Based on Human-Computer Interaction Combined Algorithm
6
作者 Fukai Li Jian Wu +2 位作者 Jian Chen Huaiyun Peng Yehuo Fan 《China Communications》 SCIE CSCD 2023年第6期178-198,共21页
In the electromagnetic wave measurement while drilling(EM MWD), the extra low frequency electromagnetic wave(ELF-EM) below 20Hz was usually chosen as the carrier because of its transmission characteristics in the form... In the electromagnetic wave measurement while drilling(EM MWD), the extra low frequency electromagnetic wave(ELF-EM) below 20Hz was usually chosen as the carrier because of its transmission characteristics in the formation. However, as the drilling depth increases, the electromagnetic wave signals received on the ground gradually weaken, becoming lower than a certain signal-to-noise ratio(SNR)and making it impossible to be decoded or transmitted.The attenuation of electromagnetic wave in the formation is definitely one of the causes, but what matters more is the influence of environment noise at the well site, especially the in-band interference noise and random noise. Targeting at the out-of-band noise, the bandpass filter, which is invalid to the in-band noise,can be used to eliminate the noise out of the carrier’s main band. To cope with the question, an algorithm based on the human-computer interaction detection(HCID) was proposed in this paper that improves the SNR of ELF-EM signals, with the effective transmission distance of EM MWD increased. In this paper,the validity of the proposed HCID algorithm was verified through communication processing performance simulation and field data comparison, thus providing a reference for engineers and technicians in this field.Theoretical analysis and experimental data verification show that the combined algorithm decodes effectively under the in-band interference noise of-80d B SNR and in-band random noise of-17d B SNR. 展开更多
关键词 measurement while drilling ELF-EM Inband noise HCID transmission distance
在线阅读 下载PDF
An optimization method of fidelity parameters of formation fluid sampling cylinder while drilling
7
作者 JIANG Chuanlong YAN Tingjun +3 位作者 ZHANG Yang SUN Tengfei CHEN Zhongshuai SUN Haoyu 《Petroleum Exploration and Development》 CSCD 2022年第2期458-467,共10页
A design idea of fidelity sampling cylinder while drilling based on surface nitrogen precharging and supplemented by downhole pressurization was proposed, and the working mode and optimization method of sampling param... A design idea of fidelity sampling cylinder while drilling based on surface nitrogen precharging and supplemented by downhole pressurization was proposed, and the working mode and optimization method of sampling parameters were discussed. The nitrogen chamber in the sampling cylinder functions as an energy storage air cushion, which can supplement the pressure loss caused by temperature change in the sampling process to some extent. The downhole pressurization is to press the sample into the sample chamber as soon as possible, and further increase the pressure of sample to make up for the pressure that the nitrogen chamber cannot provide. Through the analysis of working mode of the sampling fidelity cylinder, the non-ideal gas state equation was used to deduce and calculate the optimal values of fidelity parameters such as pre-charged nitrogen pressure, downhole pressurization amount and sampling volume according to whether the bubble point pressure of the sampling fluid was known and on-site emergency sampling situation. Besides, the influences of ground temperature on fidelity parameters were analyzed, and corresponding correction methods were put forward. The research shows that the fidelity sampling cylinder while drilling can effectively improve the fidelity of the sample. When the formation fluid sample reaches the surface, it can basically ensure that the sample does not change in physical phase state and keeps the same chemical components in the underground formation. 展开更多
关键词 sampling while drilling formation fluid sample fidelity bubble point pressure nitrogen pre-charge downhole pressurization parameter optimization
在线阅读 下载PDF
An intelligent identification method of safety risk while drilling in gas drilling
8
作者 HU Wanjun XIA Wenhe +3 位作者 LI Yongjie JIANG Jun LI Gao CHEN Yijian 《Petroleum Exploration and Development》 CSCD 2022年第2期428-437,共10页
In view of the shortcomings of current intelligent drilling technology in drilling condition representation, sample collection, data processing and feature extraction, an intelligent identification method of safety ri... In view of the shortcomings of current intelligent drilling technology in drilling condition representation, sample collection, data processing and feature extraction, an intelligent identification method of safety risk while drilling was established. The correlation analysis method was used to determine correlation parameters indicating gas drilling safety risk. By collecting monitoring data in the safety risk period of more than 20 wells, a sample database of a variety of safety risks in gas drilling was established, and the number of samples was expanded by using the method of few-shot learning. According to the forms of gas drilling monitoring data samples, a two-layer convolution neural network architecture was designed, and multiple convolution cores of different sizes and weights were set to realize the vertical and horizontal convolution computations of samples to extract and learn the variation law and correlation characteristics of multiple monitoring parameters. Finally, based on the training results of neural network, samples of different kinds of safety risks were selected to enhance the recognition accuracy. Compared with the traditional BP(error back propagation) full-connected neural network architecture, this method can more deeply and effectively identify safety risk characteristics in gas drilling, and thus identify and predict risks in advance, which is conducive to avoid and quickly solve safety risks while drilling. Field application has proved that this method has an identification accuracy of various safety risks while drilling in the process of gas drilling of about 90% and is practical. 展开更多
关键词 gas drilling safety risk intelligent risk identification few-shot learning convolution neural network measurement while drilling
在线阅读 下载PDF
Generalized collar waves in acoustic logging while drilling 被引量:2
9
作者 王秀明 何晓 张秀梅 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第12期118-120,共3页
Tool waves, also named collar waves, propagating along the drill collars in acoustic logging while drilling (ALWD), strongly interfere with the needed P- and S-waves of a penetrated formation, which is a key issue i... Tool waves, also named collar waves, propagating along the drill collars in acoustic logging while drilling (ALWD), strongly interfere with the needed P- and S-waves of a penetrated formation, which is a key issue in picking up formation P- and S-wave velocities. Previous studies on physical insulation for the collar waves designed on the collar between the source and the receiver sections did not bring to a satisfactory solution. In this paper, we investigate the propagation features of collar waves in different models. It is confirmed that there exists an indirect collar wave in the synthetic full waves due to the coupling between the drill collar and the borehole, even there is a perfect isolator between the source and the receiver. The direct collar waves propagating all along the tool and the indirect ones produced by echoes from the borehole wall are summarized as the generalized collar waves. Further analyses show that the indirect collar waves could be relatively strong in the full wave data. This is why the collar waves cannot be eliminated with satisfactory effect in many cases by designing the physical isolators carved on the tool. 展开更多
关键词 acoustic logging while drilling borehole wave propagation generalized collar waves indirectcollar waves
全文增补中
Logging-while-drilling formation dip interpretation based on long short-term memory 被引量:3
10
作者 SUN Qifeng LI Na +2 位作者 DUAN Youxiang LI Hongqiang TANG Haiquan 《Petroleum Exploration and Development》 CSCD 2021年第4期978-986,共9页
Azimuth gamma logging while drilling(LWD)is one of the important technologies of geosteering but the information of real-time data transmission is limited and the interpretation is difficult.This study proposes a meth... Azimuth gamma logging while drilling(LWD)is one of the important technologies of geosteering but the information of real-time data transmission is limited and the interpretation is difficult.This study proposes a method of applying artificial intelligence in the LWD data interpretation to enhance the accuracy and efficiency of real-time data processing.By examining formation response characteristics of azimuth gamma ray(GR)curve,the preliminary formation change position is detected based on wavelet transform modulus maxima(WTMM)method,then the dynamic threshold is determined,and a set of contour points describing the formation boundary is obtained.The classification recognition model based on the long short-term memory(LSTM)is designed to judge the true or false of stratum information described by the contour point set to enhance the accuracy of formation identification.Finally,relative dip angle is calculated by nonlinear least square method.Interpretation of azimuth gamma data and application of real-time data processing while drilling show that the method proposed can effectively and accurately determine the formation changes,improve the accuracy of formation dip interpretation,and meet the needs of real-time LWD geosteering. 展开更多
关键词 logging while drilling azimuth gamma stratigraphic identification artificial intelligence long short-term memory wavelet transform
在线阅读 下载PDF
Numerical modeling of DPSK pressure signals and their transmission characteristics in mud channels 被引量:11
11
作者 Shen Yue Su Yinao +2 位作者 Li Gensheng Li Lin Tian Shouceng 《Petroleum Science》 SCIE CAS CSCD 2009年第3期266-270,共5页
A numerical model and transmission characteristic analysis of DPSK (differential phase shift keying) pressure signals in mud channels is introduced. With the control logic analysis of the rotary valve mud telemetry,... A numerical model and transmission characteristic analysis of DPSK (differential phase shift keying) pressure signals in mud channels is introduced. With the control logic analysis of the rotary valve mud telemetry, a logical control signal is built from a Gate function sequence according to the binary symbols of transmitted data and a phase-shift function is obtained by integrating the logical control signal. A mathematical model of the DPSK pressure signal is built based on principles of communications by modulating carrier phase with the phase-shift function and a numerical simulation of the pressure wave is implemented with the mathematical model by MATLAB programming. Considering drillpipe pressure and drilling fluid temperature profile along drillpipes, the drillpipe of a vertical well is divided into a number of sections. With water-based drilling fluids, the impacts of travel distance, carrier frequency, drillpipe size, and drilling fluids on the signal transmission were studied by signal transmission characteristic analysis for all the sections. Numerical calculation results indicate that the influences of the viscosity of drilling fluids and volume fraction of gas in drilling fluids on the DPSK signal transmission are more notable than the others and the signal will distort in waveform with differential attenuations of the signal frequent component. 展开更多
关键词 Measurement while drilling (MWD) MODULATION binary symbol mathematical model numerical simulation differential phase shift keying (DPSK) signal transmission characteristics
在线阅读 下载PDF
Study of real-time LWD data visual interpretation and geo-steering technology 被引量:7
12
作者 Shao Cairui Zhang Fuming +4 位作者 Chen Guoxing Ji Jiaqi Hou Qinggong Tang Jianhong Cao Xianjun 《Petroleum Science》 SCIE CAS CSCD 2013年第4期477-485,共9页
LWD(logging while drilling) data has been used to explore complex subtle reservoirs by realtime visual interpretation and geo-steering.The method comprises of computer communication,well log data processing,formatio... LWD(logging while drilling) data has been used to explore complex subtle reservoirs by realtime visual interpretation and geo-steering.The method comprises of computer communication,well log data processing,formation recognition,reservoir modeling and model updating in real time.We studied the key technologies related to real-time LWD data visual interpretation and geo-steering and developed computer software with Chinese intellectual property rights covering the following important aspects: 1) real-time computer communication of well site LWD data;2) visualization of geological model and borehole information;3) real-time interpretation of LWD data;4) real-time geological model updating and geo-steering technology.We use field application examples to demonstrate the feasibility and validity of the proposed technologies. 展开更多
关键词 LWD(logging while drilling REAL-TIME VISUALIZATION INTERPRETATION geo-steering
在线阅读 下载PDF
Deep-detection of formation boundary using transient multicomponent electromagnetic logging measurements 被引量:1
13
作者 Xi-Yong Yuan Shao-Gui Deng +2 位作者 Zhi-Qiang Li Xiao-Mei Han Xu-Fei Hu 《Petroleum Science》 SCIE CAS CSCD 2022年第3期1085-1098,共14页
The maximum distance at which an electromagnetic(EM)logging while drilling(LWD)tool detects an approaching boundary is defined as the depth of detection(DOD).Ultra-deep detection capability of the transient multicompo... The maximum distance at which an electromagnetic(EM)logging while drilling(LWD)tool detects an approaching boundary is defined as the depth of detection(DOD).Ultra-deep detection capability of the transient multicomponent EM logging measurement is investigated here.First,we adopt sine and cosine transform to calculate the transient multicomponent responses.Compared to the cosine transform,sine transform is more accurate in solving late-time responses.Then,a time-domain geosignal is introduced to sense the boundary.Results show that DOD of this transient EM measurement can be up to tens of meters,including directionally sensitivity.Additionally,by studying the decay characteristics of different components with time,cross component is confirmed to decay much faster than the coaxial/coplanar components in the formation coordinate system.A pseudo-inversion is thereby proposed to determine the dip angle of anisotropic stratified formation.Theoretical simulation results indicate that this algebraic method can determine the true dip at some particular moments.It is still stable and valid even when considering random measurement errors.Moreover,we establish the linear relationship between the time at which the half-point of geosignal curve appears and the distance to boundary(DTB),which would assist in the quick determination of DTB. 展开更多
关键词 TIME-DOMAIN Logging while drilling Formation boundary Dip angle Distance to boundary
在线阅读 下载PDF
Ground characterization and roof mapping: Online sensor signal-based change detection 被引量:2
14
作者 Bahrampour Soheil Rostami Jamal +2 位作者 Ray Asok Naeimipour Ali Collins Craig 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第6期905-913,共9页
Measurement while drilling systems are becoming an important part of excavation operations for rock characterization and ground support design that require reliable information on rock strength and location & frequen... Measurement while drilling systems are becoming an important part of excavation operations for rock characterization and ground support design that require reliable information on rock strength and location & frequency of joints or voids. This paper focuses on improving rock characterization algorithms for instrumented roof-boRer systems. For this purpose, an improved void detection algorithm is proposed, where the underlying theory is built upon the concept of mean change detection based on the feed pressure signals. In addition, the application of acoustic sensing for void detection is examined and it is shown that the variance of the filtered acoustic signal is correlated to the strength of the material being drilled. The proposed algorithm has been validated on the data collected from full-scale drilling tests in various concrete and rock samples at the J. H. Fletcher facility. 展开更多
关键词 Measurement while drilling systemsRoof mappingVoid detectionOnline change detection
在线阅读 下载PDF
Integrating geometallurgical ball mill throughput predictions into short-term stochastic production scheduling in mining complexes
15
作者 Christian Both Roussos Dimitrakopoulos 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第2期185-199,共15页
This article presents a novel approach to integrate a throughput prediction model for the ball mill into short-term stochastic production scheduling in mining complexes.The datasets for the throughput prediction model... This article presents a novel approach to integrate a throughput prediction model for the ball mill into short-term stochastic production scheduling in mining complexes.The datasets for the throughput prediction model include penetration rates from blast hole drilling(measurement while drilling),geological domains,material types,rock density,and throughput rates of the operating mill,offering an accessible and cost-effective method compared to other geometallurgical programs.First,the comminution behavior of the orebody was geostatistically simulated by building additive hardness proportions from penetration rates.A regression model was constructed to predict throughput rates as a function of blended rock properties,which are informed by a material tracking approach in the mining complex.Finally,the throughput prediction model was integrated into a stochastic optimization model for short-term production scheduling.This way,common shortfalls of existing geometallurgical throughput prediction models,that typically ignore the non-additive nature of hardness and are not designed to interact with mine production scheduling,are overcome.A case study at the Tropicana Mining Complex shows that throughput can be predicted with an error less than 30 t/h and a correlation coefficient of up to 0.8.By integrating the prediction model and new stochastic components into optimization,the production schedule achieves weekly planned production reliably because scheduled materials match with the predicted performance of the mill.Comparisons to optimization using conventional mill tonnage constraints reveal that expected production shortfalls of up to 7%per period can be mitigated this way. 展开更多
关键词 Geometallurgy Stochastic optimization Short-term open pit mine production scheduling Measurement while drilling Non-additivity HARDNESS
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部