期刊文献+
共找到624篇文章
< 1 2 32 >
每页显示 20 50 100
基于IWOA-LSTM算法的预应力钢筋混凝土梁损伤识别 被引量:4
1
作者 范旭红 章立栋 +2 位作者 杨帆 李青 郁董凯 《江苏大学学报(自然科学版)》 CAS 北大核心 2025年第1期105-112,119,共9页
为准确识别桥梁结构的损伤程度,制作了桥梁的关键构件——预应力钢筋混凝土梁,进行三点弯曲加载试验.收集了损伤破坏全过程的声发射(AE)信号,通过AE信号参数分析,将梁的损伤破坏过程划分为4个典型阶段.构建了长短时记忆神经网络(LSTM)模... 为准确识别桥梁结构的损伤程度,制作了桥梁的关键构件——预应力钢筋混凝土梁,进行三点弯曲加载试验.收集了损伤破坏全过程的声发射(AE)信号,通过AE信号参数分析,将梁的损伤破坏过程划分为4个典型阶段.构建了长短时记忆神经网络(LSTM)模型,根据经验设置LSTM模型的超参数容易导致网络陷入局部最优而影响了分类结果,提出采用Sine混沌映射和自适应权重来改进鲸鱼优化算法(WOA),对LSTM进行超参数寻优.设计了IWOA-LSTM算法模型,训练识别试验梁各损伤阶段的AE信号特征参数.定型网络结构,并识别同种工况下其他梁的AE信号.结果表明:IWOA-LSTM算法模型识别准确率均超过或接近92%,相较于普通LSTM模型,IWOA-LSTM模型识别准确率提高了约7%. 展开更多
关键词 预应力钢筋混凝土梁 声发射 损伤识别 长短时记忆神经网络 改进的鲸鱼优化算法
在线阅读 下载PDF
基于WOA-BP神经网络的热式流量测量技术研究
2
作者 刘升虎 刘太逸 +3 位作者 冉建立 郭会强 邢亚敏 梁钊睿 《仪表技术与传感器》 北大核心 2025年第4期50-54,共5页
针对热式流量测量方法易受环境因素影响的问题,构建了一种WOA-BP神经网络流量预测模型,以热式传感器采样电压值及含水率测量信号作为模型输入量,以预测流量值作为输出值,进行温度补偿,利用鲸鱼群算法进行网络初值参数优化,得到优化后的... 针对热式流量测量方法易受环境因素影响的问题,构建了一种WOA-BP神经网络流量预测模型,以热式传感器采样电压值及含水率测量信号作为模型输入量,以预测流量值作为输出值,进行温度补偿,利用鲸鱼群算法进行网络初值参数优化,得到优化后的补偿模型,提高了算法的收敛速度。实验结果表明:优化后的神经网络模型在热式流量测量方法中具有较好的流量预测效果,WOA-BP网络模型R~2达到0.989,比传统BP模型的预测精确性和鲁棒性更高,在对油井产液量预测方面具有实用价值。 展开更多
关键词 鲸鱼优化算法(woa) BP神经网络 热式流量测量方法 温度补偿
在线阅读 下载PDF
基于WOA-SA-RBF模型的西北内陆河流域突发水污染安全评价
3
作者 靳春玲 田亮 +2 位作者 贡力 李战江 蔡惠春 《科学技术与工程》 北大核心 2025年第23期10075-10083,共9页
为保障西北内陆河流域生态安全,急需开展西北地区内陆河流域突发水污染安全评价。聚焦于疏勒河流域敦煌区域,通过运用压力-状态-响应(pressure-state-response,PSR)模型框架,基于2017—2022年该流域的历史数据,采用一种融合鲸鱼优化与... 为保障西北内陆河流域生态安全,急需开展西北地区内陆河流域突发水污染安全评价。聚焦于疏勒河流域敦煌区域,通过运用压力-状态-响应(pressure-state-response,PSR)模型框架,基于2017—2022年该流域的历史数据,采用一种融合鲸鱼优化与模拟退火策略的径向基(whale optimization algorithm-simulated annealing-radial basis function,WOA-SA-RBF)神经网络模型,来评估该区域的突发水污染风险等级,并与粒子群优化算法-径向基(particle swarm optimization-radial basis function,PSO-RBF),遗传优化算法-径向基(genetic algorithm-radial basis function,GA-RBF)神经网络模型及传统评价方法优劣解距离法(technique for order preference by similarity to ideal solution,TOPSIS)法的评价结果进行对比分析。分析结果显示:疏勒河敦煌段在2017—2018年突发水污染风险水平被评定为Ⅱ级,而2019—2022年则降为Ⅲ级,显示出风险逐渐下降并趋向稳定的趋势;结果与TOPSIS法分析结果一致,与流域治理情况相符,从而有效验证本文评估模型的精度。研究成果有助于提高疏勒河流域针对突发水污染事件的预防控制能力与紧急应对效率,对西北内陆河流域的水资源管理以及祁连山区域的生态保护工作具有不可忽视的重要意义。 展开更多
关键词 鲸鱼优化算法(woa) 模拟退火算法(SA) 径向基神经网络模型(RBF) 突发水污染 安全评价 内陆河
在线阅读 下载PDF
基于BWO和WOA的VMD-LSTM短期风速预测
4
作者 贾世会 刘立夫 +1 位作者 迟晓妮 李高西 《郑州大学学报(工学版)》 北大核心 2025年第3期59-66,共8页
针对风电机组组网运行存在的功率波动性和随机性,为提高风速预测的精度和风电机组运行的稳定性,提出了一种基于白鲸优化算法和鲸鱼优化算法的VMD-LSTM短期风速预测模型。首先,利用白鲸优化算法对VMD中的模态数及惩罚因子进行优化,得到... 针对风电机组组网运行存在的功率波动性和随机性,为提高风速预测的精度和风电机组运行的稳定性,提出了一种基于白鲸优化算法和鲸鱼优化算法的VMD-LSTM短期风速预测模型。首先,利用白鲸优化算法对VMD中的模态数及惩罚因子进行优化,得到分解的子序列;其次,对于LSTM中的隐含层节点数、最大训练次数和初始学习率等参数,使用鲸鱼优化算法进行确定;最后,利用LSTM的非线性拟合能力对数据进行预测。结果表明:所提预测模型在测试集上的RMSE、MAE、MAPE分别为0.2234,0.1727,0.0837,均低于其他对比模型,验证了所提模型在短期风速预测问题上的有效性。 展开更多
关键词 白鲸优化算法 鲸鱼优化算法 变分模态分解 LSTM 风速预测
在线阅读 下载PDF
基于WOA-VMD和贝叶斯估计的保护测量回路误差评估
5
作者 李振兴 柳灿 +2 位作者 翁汉琍 李振华 龚世玉 《三峡大学学报(自然科学版)》 北大核心 2025年第2期97-105,共9页
变电站保护测量回路受测量误差影响,保护灵敏度降低,对于重载线路可能引起保护误动,会造成严重后果.为推动保护测量的状态监视,提出一种基于鲸鱼优化(whale optimization algorithm,WOA)的变分模态分解(variational mode decomposition,... 变电站保护测量回路受测量误差影响,保护灵敏度降低,对于重载线路可能引起保护误动,会造成严重后果.为推动保护测量的状态监视,提出一种基于鲸鱼优化(whale optimization algorithm,WOA)的变分模态分解(variational mode decomposition,VMD)和贝叶斯估计的保护测量回路误差评估方法.针对保护测量回路的电流数据,引入WOA并结合包络熵作为适应度函数确定VMD的关键参数,基于WOA-VMD将原电流数据分解为本征模态;进一步为解决特征数目过多所带来的复杂数据分析问题,引入皮尔逊相关系数方法计算其各组系数优选特征量;最终利用贝叶斯估计法量化分析优选后的特征量信号实现误差判定.实验结果表明,本文的评估方法能够准确监测保护测量回路2%的误差偏移. 展开更多
关键词 保护测量回路 误差评估 鲸鱼优化算法 包络熵 皮尔逊相关系数 贝叶斯估计法
在线阅读 下载PDF
基于WOA-WNN-LSTM算法的红外CO痕量气体压力补偿与时序浓度分析
6
作者 田富超 张海龙 +3 位作者 苏嘉豪 梁运涛 王琳 王泽文 《光谱学与光谱分析》 北大核心 2025年第4期994-1007,共14页
红外光谱分析是工业环境气体定量分析的重要手段,当前红外气体检测仪的测量精度受环境压力变化影响较大,导致检测数据在不同压力条件下偏离实际气体浓度。为提高红外气体传感器的精度,选择了鲸鱼优化算法(whale optimization algorithm,... 红外光谱分析是工业环境气体定量分析的重要手段,当前红外气体检测仪的测量精度受环境压力变化影响较大,导致检测数据在不同压力条件下偏离实际气体浓度。为提高红外气体传感器的精度,选择了鲸鱼优化算法(whale optimization algorithm,WOA)和小波神经网络(wavelet neural network,WNN)相结合的压力补偿算法,并结合长短期记忆法(long short-term memory,LSTM)对补偿后的数据进行预测。通过搭建工业环境气体压力补偿实验平台,使用高精度配气仪配置100~900 ppm标准CO气体,在80~120 kPa范围内进行数百组重复实验,发现CO气体传感器在负压条件下测量值小于标气浓度,正压条件下测量值大于标气浓度,并随压力变化呈线性关系,绝对误差最高为86 ppm。将传感器数据使用小波神经网络进行误差降低,初步补偿后的CO误差降至26 ppm,但由于参数可移植性较差,个别数据误差较大。进一步使用鲸鱼优化算法优化小波神经网络的参数后,补偿效果显著提升,传感器测量值与真值之差保持在0.004%以内且数据稳定。最终结合LSTM进行气体浓度预测,预测值与实际值之间的均方根误差(RMSE)均小于0.1,平均绝对误差(MAE)均小于0.020,实验结果表明,WOA-WNN-LSTM算法能够有效提高红外气体传感器的测量精度,成功消除环境压力对测量结果的影响,为工业环境气体检测提供了更为可靠和精准的解决方案。 展开更多
关键词 红外光谱分析 环境压力补偿 鲸鱼优化算法 小波神经网络 时序浓度预测
在线阅读 下载PDF
基于WOA-CNN-BiGRU的PEMFC性能衰退预测
7
作者 陈贵升 刘强 许杨松 《电源技术》 北大核心 2025年第4期831-840,共10页
针对PEMFC性能预测领域中存在的预测精度不足和泛化能力有限的问题,提出了一种结合鲸鱼优化算法(WOA)、卷积神经网络(CNN)和双向门控循环单元(BiGRU)的PEMFC输出性能预测方法。首先,采用最大信息系数从大量数据中提取对PEMFC输出性能影... 针对PEMFC性能预测领域中存在的预测精度不足和泛化能力有限的问题,提出了一种结合鲸鱼优化算法(WOA)、卷积神经网络(CNN)和双向门控循环单元(BiGRU)的PEMFC输出性能预测方法。首先,采用最大信息系数从大量数据中提取对PEMFC输出性能影响显著的特征,以降低计算复杂度。然后,结合CNN的特征提取能力和BiGRU在处理双向时间依赖性数据上的优势建立CNNBiGRU模型,并通过WOA优化其超参数进一步提升预测的准确性。最后,与传统预测模型进行对比,验证所建模型的优越性。实验结果表明:在训练集占比为60%时,模型在三种不同工况PEMFC老化数据集上的RMSE分别为0.0017、0.0014和0.0110,证明CNN-BiGRU模型具有较高的预测精度以及良好的泛化能力。 展开更多
关键词 PEMFC 性能衰退 鲸鱼优化算法 卷积神经网络 双向门控循环单元
在线阅读 下载PDF
基于小波降噪与WOA⁃Bi⁃LSTM的短时交通流预测
8
作者 贾现广 苏治文 +1 位作者 冯超琴 吕英英 《现代电子技术》 北大核心 2025年第14期77-84,共8页
交通流数据中异常数据波动作为噪声,会对模型训练收敛以及预测精度产生不利影响。为解决该问题,引入两种不同阈值函数的小波阈值去噪方法对交通流数据进行降噪处理,将小波阈值去噪(WD)、鲸鱼优化算法(WOA)和双向长短期记忆网络(Bi-LSTM... 交通流数据中异常数据波动作为噪声,会对模型训练收敛以及预测精度产生不利影响。为解决该问题,引入两种不同阈值函数的小波阈值去噪方法对交通流数据进行降噪处理,将小波阈值去噪(WD)、鲸鱼优化算法(WOA)和双向长短期记忆网络(Bi-LSTM)相结合,提出一种WD-WOA-Bi-LSTM方法。首先,将两种方法降噪后的交通流数据进行对比,并将降噪效果更好的数据进行归一化处理、数据集划分以及数据维度转换;然后,通过WOA对Bi-LSTM部分超参数进行寻优,迭代至最优适应度的超参数组合,并用于构建Bi-LSTM;最后,应用英格兰公路交通流数据验证所提模型。结果表明:WDWOA-Bi-LSTM方法相较WOA-Bi-LSTM和WD-Bi-LSTM,RMSE降低12.5004%和3.9789%;MAE降低21.7350%和4.7225%;MAPE降低38.5647%和10.8652%。该模型相比其他模型评价指标均为最低,具有较高的预测精度,可以为高精度的短时交通流预测提供参考。 展开更多
关键词 智能交通 短时交通流预测 小波阈值去噪 鲸鱼优化算法 双向长短期记忆网络 深度学习 超参数寻优
在线阅读 下载PDF
基于WOA-GRU的风电机组发电机故障预警方法
9
作者 邢作霞 马岩溪 +2 位作者 郭珊珊 陈明阳 罗世茂 《电机与控制学报》 北大核心 2025年第6期54-62,共9页
为实现风电机组发电机故障的早期捕获,提高故障预警的精度,提出一种基于WOA-GRU模型的风电机组发电机故障预警方法。首先,通过箱线图剔除风电机组发电机温度离群数据并应用灰色关联分析方法在高维SCADA数据中提取出与风电机组发电机温... 为实现风电机组发电机故障的早期捕获,提高故障预警的精度,提出一种基于WOA-GRU模型的风电机组发电机故障预警方法。首先,通过箱线图剔除风电机组发电机温度离群数据并应用灰色关联分析方法在高维SCADA数据中提取出与风电机组发电机温度关联度高的特征参量作为模型输入;其次,采用鲸鱼优化算法对门控循环单元神经网络超参数组寻优,将获得的最优参数门控循环单元神经网络模型用于预测风电机组发电机温度,并通过自适应阈值算法设定报警阈值,据此对风电机组发电机进行故障预警;最后,以国内某风电场风电机组SCADA数据为例进行分析,将WOA-GRU与BP、ELM、RF、GRU、LSTM模型进行对比,结果表明,WOA-GRU模型比其他模型有更高的预测精度,并能够更精确地捕获风电机组发电机早期故障。 展开更多
关键词 风电机组发电机 SCADA数据 鲸鱼优化算法 门控循环单元 故障预警
在线阅读 下载PDF
基于WOA-LQR的智能车辆路径跟踪控制
10
作者 张闯 赵奉奎 +1 位作者 张涌 张伟 《南京信息工程大学学报》 北大核心 2025年第3期352-362,共11页
针对无人驾驶车辆在特殊行驶工况(冰雪路面、雨天路面、高速换道)下路径跟踪控制精度差的问题,本文设计了一种基于鲸鱼优化算法(Whale Optimization Algorithm,WOA)的LQR控制器(WOA-LQR).首先,基于二自由度车辆动力学模型建立跟踪误差模... 针对无人驾驶车辆在特殊行驶工况(冰雪路面、雨天路面、高速换道)下路径跟踪控制精度差的问题,本文设计了一种基于鲸鱼优化算法(Whale Optimization Algorithm,WOA)的LQR控制器(WOA-LQR).首先,基于二自由度车辆动力学模型建立跟踪误差模型,以此为基础设计离散LQR控制器,并采用前馈控制消除由于系统简化带来的误差.同时,为解决固定权重系数下的LQR控制器对特殊行驶工况适应性差导致跟踪精度低、车辆失稳的问题,在以横向误差、航向角误差作为评价指标的基础上,考虑车辆侧向加速度和前轮转角对车辆维持稳定的影响,并对评价指标设定相应的权重系数,设计了目标值最小的适应度函数,提出一种基于鲸鱼算法优化的LQR自适应权重系数调节策略.最后,通过Carsim/Simulink联合仿真对WOA-LQR控制器在不同工况下进行路径跟踪仿真实验.结果表明:本文提出的控制策略在复杂行驶工况下有着良好的跟踪效果,显著提升了车辆在路径跟踪过程中的控制精度,具有较强的鲁棒性. 展开更多
关键词 无人驾驶车辆 路径跟踪控制 线性二次型调节器 前馈控制 鲸鱼优化算法
在线阅读 下载PDF
基于WOA-BP组合模型的芦笋价格预测研究
11
作者 杨洁 王俊美 张超 《山东农业大学学报(自然科学版)》 北大核心 2025年第1期93-100,共8页
芦笋作为一种高价值蔬菜,价格走势预测对于市场分析和决策制定具有重要意义。芦笋价格受到多类因素的影响,因此提高价格预测精度的关键在于深入分析这些影响因素。本文提出了一种基于鲸鱼优化算法(WOA)与反向传播神经网络(BP)相结合的... 芦笋作为一种高价值蔬菜,价格走势预测对于市场分析和决策制定具有重要意义。芦笋价格受到多类因素的影响,因此提高价格预测精度的关键在于深入分析这些影响因素。本文提出了一种基于鲸鱼优化算法(WOA)与反向传播神经网络(BP)相结合的组合模型。研究中,本文首先采用主成分分析(PCA)对影响因素进行特征降维,随后将主成分分析后的多维特征集和经过数据融合的一维特征集分别输入优化前后的BP神经网络进行预测分析。通过对比分析不同输入下模型的预测性能,实验结果表明:经过WOA算法优化后的模型在预测效果上显著提升。具体而言,WOA-BP组合模型相较于传统的BP模型,在均方根误差(RMSE)上提高了2.431,平均绝对误差(MAE)提高了2.553,平均绝对百分比误差(MAPE)提高了5.606,决定系数(R^(2))提升了0.131。此外,WOA-BP-fusion模型与BP-fusion模型相比,RMSE提高了1.926,MAE提高了1.638,MAPE提高了5.539,R^(2)提高了0.101。结果表明,WOA-BP组合模型在进行数据融合后,能够更有效地捕捉输入特征与芦笋价格序列之间的关系,显著提高了预测精度,增强了模型的泛化能力和鲁棒性。WOA优化算法不仅提升了BP模型的预测精度,而且在数据融合过程中显著增强了模型对价格变动的反应能力。 展开更多
关键词 鲸鱼优化算法 组合模型 主成分分析 多源数据融合
在线阅读 下载PDF
基于WOA-VMD算法的地铁钢轨波磨识别
12
作者 唐虎 李霞 +1 位作者 王安阳 王安斌 《噪声与振动控制》 北大核心 2025年第3期209-215,共7页
针对现有钢轨波磨检测方法效率低下且精度不高等问题,提出一种基于鲸鱼优化算法(Whale Optimization Algorithm,WOA)-变分模态分解(Variational Mode Decomposition,VMD)的地铁钢轨波磨识别方法。首先,利用鲸鱼优化算法对变分模态分解... 针对现有钢轨波磨检测方法效率低下且精度不高等问题,提出一种基于鲸鱼优化算法(Whale Optimization Algorithm,WOA)-变分模态分解(Variational Mode Decomposition,VMD)的地铁钢轨波磨识别方法。首先,利用鲸鱼优化算法对变分模态分解模态个数K和惩罚系数α进行参数寻优,然后根据VMD将轴箱振动加速度信号分解为一组本征模态分量(Intrinsic Mode Functions,IMF);引入IMF振动能量比进行筛选,并计算剩下分量的能量值,通过设定阈值判断是否存在钢轨波磨,最后对超出阈值的分量进行同步压缩小波时频分析,根据其中心频率确定钢轨波磨的波长。通过仿真实验和工程实例验证了该方法的有效性,结果表明:该方法能够通过轴箱振动加速度识别钢轨波磨,并确定钢轨波磨的波长信息,有助于地铁轨道的维修和养护。 展开更多
关键词 故障诊断 钢轨波磨 变分模态分解 鲸鱼优化算法 样本熵 同步压缩小波变换
在线阅读 下载PDF
基于WOA-Elman神经网络的城市固废焚烧炉主蒸汽流量软测量 被引量:1
13
作者 梁伟平 薛文雅 +2 位作者 马靖宁 陈联宏 许洪滨 《控制工程》 北大核心 2025年第2期201-207,共7页
主蒸汽流量对于垃圾焚烧炉平稳运行起着重要的作用。目前,主蒸汽流量机理计算模型复杂,且准确度不高。针对这一问题,应用一种基于鲸鱼优化算法(Whale optimization algorithm,WOA)和Elman神经网络的焚烧炉主蒸汽流量软测量模型。首先,... 主蒸汽流量对于垃圾焚烧炉平稳运行起着重要的作用。目前,主蒸汽流量机理计算模型复杂,且准确度不高。针对这一问题,应用一种基于鲸鱼优化算法(Whale optimization algorithm,WOA)和Elman神经网络的焚烧炉主蒸汽流量软测量模型。首先,根据相关性分析筛选相关变量;再通过WOA优化Elman神经网络参数;最后,建立WOA-Elman神经网络主蒸汽流量软测量模型。结果表明,与其他经典软测量模型相比,建立的WOA-Elman神经网络软测量模型准确度更高,误差更小,能够有效地应用于主蒸汽流量软测量中。 展开更多
关键词 垃圾焚烧炉 主蒸汽流量 软测量 ELMAN神经网络 鲸鱼优化算法
在线阅读 下载PDF
基于WOA-IC优化神经网络的隧道爆破振动预测研究
14
作者 高宇璠 傅洪贤 《振动与冲击》 北大核心 2025年第4期229-237,共9页
为了提高爆破振动预测精度,提出了一种鲸鱼优化算法(whale optimization algorithm,WOA)和信息准则(information criterion,IC)优化的人工神经网络(artificial neural network,ANN)爆破振动预测模型。根据二维指标变量法将地质参数定量... 为了提高爆破振动预测精度,提出了一种鲸鱼优化算法(whale optimization algorithm,WOA)和信息准则(information criterion,IC)优化的人工神经网络(artificial neural network,ANN)爆破振动预测模型。根据二维指标变量法将地质参数定量化,建立了包括3个定量参数和10个定性参数的更完整的数据集。利用信息准则对模型复杂度的反馈,构建了一个提高模型泛化能力的双层优化结构,分析改进ANN模型的激活函数和训练算法最优组合,并引入鲸鱼算法优化模型初始权值和阈值的选取,降低模型输出结果的偏差和波动。对比分析WOA-IC-ANN模型与传统经验公式、ANN模型、IC-ANN模型、WOA-ANN模型预测结果的差异。研究表明,WOA-IC-ANN模型的预测结果与实际吻合更好,误差显著降低,具有较好的泛化能力。研究成果可用于隧道爆破工程的振动预测,并为类似工作提供借鉴和参考。 展开更多
关键词 爆破振动 预测模型 信息准则(IC) 鲸鱼优化算法(woa) 人工神经网络(ANN)
在线阅读 下载PDF
基于IWOA-LSSVM的矿用差压式流量计误差补偿方法
15
作者 王伟峰 李煜 +3 位作者 田丰 李卓洋 白玉 李寒冰 《西安科技大学学报》 北大核心 2025年第4期726-734,共9页
针对矿用差压式流量计易受井下瓦斯抽采管道中温度、湿度、压力等因素的干扰,导致测量误差较大的问题,提出了一种基于改进的鲸鱼算法(IWOA)优化最小二乘支持向量机(LSSVM)的误差补偿方法。采用鲸鱼算法(WOA)优化LSSVM模型的核函数参数... 针对矿用差压式流量计易受井下瓦斯抽采管道中温度、湿度、压力等因素的干扰,导致测量误差较大的问题,提出了一种基于改进的鲸鱼算法(IWOA)优化最小二乘支持向量机(LSSVM)的误差补偿方法。采用鲸鱼算法(WOA)优化LSSVM模型的核函数参数和惩罚因子,引入Tent混沌映射、随机性学习方法以及自适应权重,构建IWOA-LSSVM误差补偿模型;搭建试验模拟测试平台,模拟抽采管道环境,应用Matlab对监测数据进行仿真,对比BP神经网络、PSO-LSSVM算法、GWO-LSSVM算法的误差补偿结果。结果表明:相较于原始测量值,BP神经网络使差压式流量计平均百分比误差从7.40%下降到1.13%,PSO-LSSVM算法使平均百分比误差下降到1.05%,GWO-LSSVM算法使平均百分比误差下降到0.47%,而IWOA-LSSVM算法可以使百分比误差下降到0.23%。IWOA-LSSVM算法能有效消除环境因素对流量计输出结果的影响,提高了矿用差压式流量计的可靠性与检测精度。 展开更多
关键词 差压式流量计 误差补偿 鲸鱼算法 最小二乘支持向量机 瓦斯抽采
在线阅读 下载PDF
基于WOA-RF算法的船舶柴发配电系统故障诊断
16
作者 李维波 高峰 +3 位作者 肖朋 黄康政 阮道杰 高俊卓 《中国舰船研究》 北大核心 2025年第2期77-88,共12页
[目的]船舶柴发配电系统对航行稳定性至关重要,海洋工作环境的严苛性致使其故障频发,为此提出一种基于鲸鱼优化算法的优化随机森林(WOA-RF)算法,用以开展船舶柴发配电系统故障诊断。[方法]首先,基于Matlab/Simulink仿真软件搭建船舶柴... [目的]船舶柴发配电系统对航行稳定性至关重要,海洋工作环境的严苛性致使其故障频发,为此提出一种基于鲸鱼优化算法的优化随机森林(WOA-RF)算法,用以开展船舶柴发配电系统故障诊断。[方法]首先,基于Matlab/Simulink仿真软件搭建船舶柴发配电系统模型,采集其故障工况和正常工况的数据;然后,对收集的数据进行预处理以提取时域特征,并使用随机森林算法提取重要特征,从而减少数据维度;最后,使用WOA优化后的随机森林模型对船舶柴发配电系统运行数据进行故障识别、诊断和分类。[结果]仿真模拟试验表明:采用WOA-RF算法识别故障状态和正常状态的准确率为100%,区分12种故障类型的诊断准确率为98.26%;在原始数据集中,与9种不同算法对比,WOA-RF算法的准确率最低提升了4.86%,最高提升了34.37%;在添加10dB噪声数据后,与6种不同算法对比,WOA-RF算法的准确率最低提升了2.43%,最高提升了18.40%。[结论]基于WOA-RF算法的故障诊断方法在复杂海洋环境下展示了优异的准确性和鲁棒性,结果可为船舶电力系统故障的可靠识别提供参考。 展开更多
关键词 船舶柴发配电系统 故障分析 故障诊断 鲸鱼优化算法 随机森林算法 SIMULINK模型 特征提取
在线阅读 下载PDF
基于WOA-RBF的螺杆转子双砂带磨削表面粗糙度及材料去除率预测
17
作者 王兴磊 杨赫然 +2 位作者 孙兴伟 赵泓荀 潘飞 《制造技术与机床》 北大核心 2025年第4期172-179,共8页
为准确预测双砂带同步磨削后多头螺杆转子的表面粗糙度与材料去除率,提出一种基于鲸鱼优化算法-径向基函数(whale optimization algorithm-radial basis function,WOA-RBF)组合神经网络的预测模型。与基于RBF和基于卷积神经网络(convolu... 为准确预测双砂带同步磨削后多头螺杆转子的表面粗糙度与材料去除率,提出一种基于鲸鱼优化算法-径向基函数(whale optimization algorithm-radial basis function,WOA-RBF)组合神经网络的预测模型。与基于RBF和基于卷积神经网络(convolutional neural networks,CNN)的预测模型进行对比,结果表明提出的预测模型平均相对误差低于RBF预测模型和CNN预测模型,同时均方根误差、决定系数等指标优于对比对象。单因素预测结果表明螺杆转子双砂带磨削的表面粗糙度随主气缸压力、砂带粒度升高而增加,随着砂带张紧力升高而降低,随着砂带线速度升高先降低再增加。材料去除率随着主气缸气压及砂带线速度、砂带粒度升高而增加,随着砂带张紧力升高而降低。装置1对磨削工件材料去除率影响较大,而装置2对磨削工件表面粗糙度影响较大。提出的方法可为其他复杂型面工件的磨削质量预测提供参考。 展开更多
关键词 双砂带磨削 表面粗糙度 材料去除率 鲸鱼优化算法 径向基神经网络
在线阅读 下载PDF
基于WOA-IGWO-LSTM的作业车间实时调度
18
作者 郑华丽 魏光艳 +2 位作者 孙东 王明君 叶春明 《机床与液压》 北大核心 2025年第2期54-63,共10页
针对作业车间实时调度问题,基于长短期记忆(LSTM)神经网络,提出WOA-IGWO-LSTM算法。根据调度问题和算法设计三元样本数据结构,以性能指标和生产系统状态属性作为输入特征,输出当前决策点的最佳调度规则。利用鲸鱼优化算法(WOA)对输入特... 针对作业车间实时调度问题,基于长短期记忆(LSTM)神经网络,提出WOA-IGWO-LSTM算法。根据调度问题和算法设计三元样本数据结构,以性能指标和生产系统状态属性作为输入特征,输出当前决策点的最佳调度规则。利用鲸鱼优化算法(WOA)对输入特征进行降维,以提高模型泛化能力和准确性。引入非线性收敛因子设计一种改进灰狼算法(IGWO)用于调节LSTM参数,提高算法实用性。最后,通过对比试验验证了WOA、IGWO以及WOA-IGWO-LSTM的有效性,并利用工业案例数据验证了WOA-IGWO-LSTM对于解决作业车间实时调度问题的有效性和可行性。 展开更多
关键词 长短期记忆(LSTM)神经网络 鲸鱼优化算法(woa) 改进灰狼算法 作业车间实时调度
在线阅读 下载PDF
基于WOA-GRU模型的煤泥浮选智能控制研究
19
作者 窦治衡 王然风 +3 位作者 秦新凯 柴宇青 李品钰 刘舒通 《工矿自动化》 北大核心 2025年第4期153-159,168,共8页
由于浮选过程机理复杂,难以满足先进过程控制的需求,基于系统辨识方法进行建模,并针对传统辨识方法拟合度较低的问题,提出了一种基于鲸鱼优化算法(WOA)与门控循环单元(GRU)(WOA-GRU)的系统辨识模型。该模型利用GRU有效应对浮选过程中存... 由于浮选过程机理复杂,难以满足先进过程控制的需求,基于系统辨识方法进行建模,并针对传统辨识方法拟合度较低的问题,提出了一种基于鲸鱼优化算法(WOA)与门控循环单元(GRU)(WOA-GRU)的系统辨识模型。该模型利用GRU有效应对浮选过程中存在的时滞特性,通过WOA对GRU网络参数进行优化,进一步提高了模型的辨识精度。考虑到现有选煤厂普遍使用单输入单输出的PID控制器,难以应对多输入多输出系统,将模型预测控制(MPC)引入实际生产现场,以更好地解决浮选过程中多变量耦合问题。基于代池坝选煤厂的生产数据,分别对WOA-GRU和NARX 2种辨识模型进行了MPC仿真,结果表明,WOA-GRU模型的拟合精度较NARX模型高51.84%,引入MPC后,WOA-GRU模型可将灰分波动控制在设定值的±4%内,优于NARX模型。现场试运行结果表明,灰分波动幅度位于5%~10%的数据较引入MPC前占比减少了10.8%,大于10%的数据占比则减少了3.9%,说明WAO-GRU模型不仅具备更高的精度与稳定性,而且能够减小灰分的波动,为煤泥浮选过程的智能化控制与应用提供了参考。 展开更多
关键词 煤泥浮选 系统辨识 模型预测控制 鲸鱼优化算法 门控循环单元 煤泥灰分
在线阅读 下载PDF
以改进的Adaboost-WOA-BP模型建立页岩储层的总有机碳含量预测方法:以四川盆地龙马溪组X地区页岩储层为例
20
作者 陈甄明 谢锐杰 +2 位作者 彭宏昶 李瑶 曹永强 《科学技术与工程》 北大核心 2025年第2期494-501,共8页
页岩储层总有机碳含量(total organic carbon,TOC)是页岩生烃潜力及页岩气富集程度的重要参数,其精确预测对油气勘探开发具有重要意义。常规的线性回归方法受到地区以及测井资料之间复杂的非线性关系的影响,存在预测精度有限的问题。为... 页岩储层总有机碳含量(total organic carbon,TOC)是页岩生烃潜力及页岩气富集程度的重要参数,其精确预测对油气勘探开发具有重要意义。常规的线性回归方法受到地区以及测井资料之间复杂的非线性关系的影响,存在预测精度有限的问题。为此提出一种Adaboost-WOA-BP预测模型来进行TOC含量的预测,将WOA(whale optimization algorithm)算法优化过的BP(backpropagation)神经网络作为Adaboost(adaptive boosting)算法的弱学习器,集成多个弱学习器进而构建一个强的学习器。优选自然伽马、密度、声波时差等与计算TOC含量相关的敏感测井参数作为预测模型的输入,通过与常规线性回归方法、BP神经网络、WOA-BP神经网络这3种方法进行对比,Adaboost-WOA-BP模型具有更高的TOC含量预测精度,预测TOC与实测TOC符合率达到95%。 展开更多
关键词 神经网络 TOC含量预测 鲸鱼算法 集成算法
在线阅读 下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部