心脏磁共振成像(cardiac magnetic resonance,CMR)过程中患者误动、异常幅度的呼吸运动、心律失常会造成CMR图像质量下降,为解决现有的CMR图像增强网络需要人为制作配对数据,且图像增强后部分组织纹理细节丢失的问题,提出了基于空频域...心脏磁共振成像(cardiac magnetic resonance,CMR)过程中患者误动、异常幅度的呼吸运动、心律失常会造成CMR图像质量下降,为解决现有的CMR图像增强网络需要人为制作配对数据,且图像增强后部分组织纹理细节丢失的问题,提出了基于空频域特征学习的循环一致性生成对抗网络(cycle-consistent generative adversavial network based on spatial-frequency domain feature learning,SFFL-CycleGAN).研究结果表明,该网络无须人为制作配对数据集,增强后的CMR图像组织纹理细节丰富,在结构相似度(structural similarity,SSIM)和峰值信噪比(peak signal to noise ratio,PSNR)等方面均优于现有的配对训练网络以及原始的CycleGAN网络,图像增强效果好,有效助力病情诊断.展开更多
Seepage is one of the main causes for the deformation and instability of canal slopes in Xinjiang,China.In this study,centrifugal model tests under wetting-drying(WD)and wetting-drying-freezing-thawing(WDFT)cycles wer...Seepage is one of the main causes for the deformation and instability of canal slopes in Xinjiang,China.In this study,centrifugal model tests under wetting-drying(WD)and wetting-drying-freezing-thawing(WDFT)cycles were performed to investigate the water infiltration characteristics below a canal.The results show that the shallow soil of the canal models was fully saturated in the wetting process.Compared with the canal model under the WD cycles,the canal model under the WDFT cycles had larger saturated areas and a higher degree of saturation below the canal top after each cycle,indicating that the freezing-thawing(FT)process in the WDFT cycles promoted the water infiltration behavior below the canal slope.The cracks on the surface of the canal model under the cyclic action of WDFT developed further and had a higher connectivity,which provided the conditions for slope instability from a transverse tensile crack running through the canal top.On this basis,a field test was conducted to understand the water infiltration distribution below a typical canal in Xinjiang,China,which also verified the accuracy of the centrifugal results.This study provides a preliminary basis for the maintenance and seepage treatment of canals in Xinjiang,China.展开更多
As a negative electrode material for lithium-ion batteries,silicon monoxide(SiO)suffers from dramatic volume changes during cycling,causing excessive stress within the electrode and resulting in electrode deformation ...As a negative electrode material for lithium-ion batteries,silicon monoxide(SiO)suffers from dramatic volume changes during cycling,causing excessive stress within the electrode and resulting in electrode deformation and fragmentation.This ultimately leads to a decrease in cell capacity.The trends of volume expansion and capacity change of the SiO/graphite(SiO/C)composite electrode during cycling were investigated via in situ expansion monitoring.First,a series of expansion test schemes were designed,and the linear relationship between negative electrode expansion and cell capacity degradation was quantitatively analyzed.Then,the effects of different initial pressures on the long-term cycling performance of the cell were evaluated.Finally,the mechanism of their effects was analyzed by scanning electron microscope.The results show that after 50 cycles,the cell capacity decreases from 2.556 mAh to 1.689 mAh,with a capacity retention ratio(CRR)of only 66.08%.A linear relationship between the capacity retention ratio and thickness expansion was found.Electrochemical measurements and scanning electron microscope images demonstrate that intense stress inhibits the lithiation of the negative electrode and that the electrode is more susceptible to irreversible damage during cycling.Overall,these results reveal the relationship between the cycling performance of SiO and the internal pressure of the electrode from a macroscopic point of view,which provides some reference for the application of SiO/C composite electrodes in lithium-ion batteries.展开更多
Gypsum rocks are highly susceptible to mechanical deterioration under the coupled effects of wet-dry(W-D)cycles and flow rates,which significantly influence the stability of underground excavations.Despite extensive r...Gypsum rocks are highly susceptible to mechanical deterioration under the coupled effects of wet-dry(W-D)cycles and flow rates,which significantly influence the stability of underground excavations.Despite extensive research on the effects of W-D cycles,the coupling influence of flow rates and W-D cycles on gypsum rocks remains poorly understood.This study investigates the mechanical behavior and deterioration mechanisms of gypsum rocks subjected to varying W-D cycles and flow rate conditions.Axial compression tests,along with nuclear magnetic resonance(NMR)techniques,were employed to analyze the stress-strain response and microstructural changes.Based on the disturbed state concept(DSC)theory,a W-D deterioration model and a DSC-based constitutive model were developed to describe the degradation trends and mechanical responses of gypsum rocks under different conditions.The results demonstrate that key mechanical indices,elastic modulus,cohesion,uniaxial compressive strength(UCS),and internal friction angle,exhibit logarithmic declines with increasing W-D cycles,with higher flow rates accelerating the deterioration process.The theoretical models accurately capture the nonlinear compaction behavior,peak stress,and post-peak response of gypsum specimens.This study provides valuable insights for predicting the mechanical behavior of gypsum rocks and improving the stability assessments of underground structures under complex environmental conditions.展开更多
As a typical sedimentary soft rock,mudstone has the characteristics of being easily softened and disintegrated under the effect of wetting and drying(WD).The first cycle of WD plays an important role in the entire WD ...As a typical sedimentary soft rock,mudstone has the characteristics of being easily softened and disintegrated under the effect of wetting and drying(WD).The first cycle of WD plays an important role in the entire WD cycles.X-ray micro-computed tomography(micro-CT)was used as a non-destructive tool to quantitatively analyze microstructural changes of the mudstone due to the first cycle of WD.The test results show that WD leads to an increase of pore volume and pore connectivity in the mudstone.The porosity and fractal dimension of each slice of mudstone not only increase in value,but also in fluctuation amplitude.The pattern of variation in the frequency distribution of the equivalent radii of connected,isolated pores and pore throats in mudstone under WD effect satisfies the Gaussian distribution.Under the effect of WD,pores and pore throats with relatively small sizes increase the most.The sphericity of the pores in mudstones is positively correlated with the pore radius.The WD effect transforms the originally angular and flat pores into round and regular pores.This paper can provide a reference for the study of the deterioration and catastrophic mechanisms of mudstone under wetting and drying cycles.展开更多
Using solid waste as a substitute for conventional cement has become an important way to reduce carbon emissions.This paper attempted to utilize steel slag(SS)and fly ash(FA)as supplementary cementitious material by u...Using solid waste as a substitute for conventional cement has become an important way to reduce carbon emissions.This paper attempted to utilize steel slag(SS)and fly ash(FA)as supplementary cementitious material by utilizing CO_(2)mineralization curing technology.This study examined the dominant and interactive influences of the residual water/cement ratio,CO_(2)pressure,curing time,and SS content on the mechanical properties and CO_(2)uptake rate of CO_(2)mineralization curing SS-FA-Portland cement ternary paste specimens.Additionally,microstructural development was analyzed.The findings demonstrated that each factor significantly affected compressive strength and CO_(2)uptake rate,with factor interactions becoming more pronounced at higher SS dosages(>30%),lower residual water/cement ratios(0.1-0.15),and CO_(2)pressures of 0.1-0.3 MPa.Microscopic examinations revealed that mineralization primarily yielded CaCO_(3)and silica gel.The residual w/c ratio and SS content significantly influenced the CaCO_(3)content and crystallinity of the mineralization products.Post-mineralization curing,the percentage of pores larger than 50 nm significantly decreased,the proportion of harmless pores smaller than 20 nm increased,and pore structure improved.This study also found that using CO_(2)mineralization curing SS-FA-Portland cement solid waste concrete can significantly reduce the negative impact on the environment.展开更多
Lithium nickel oxide(Li_(2)NiO_(2)),as a sacrificial cathode prelithiation additive,has been used to compensate for the lithium loss for improving the lifespan of lithium-ion batteries(LIBs).However,high-cost Li_(2)Ni...Lithium nickel oxide(Li_(2)NiO_(2)),as a sacrificial cathode prelithiation additive,has been used to compensate for the lithium loss for improving the lifespan of lithium-ion batteries(LIBs).However,high-cost Li_(2)NiO_(2)suffers from inferior delithiation kinetics during the first cycle.Herein,we investigated the effects of the cost-effective copper substituted Li_(2)Ni_(1-x)Cu_(x)O_(2)(x=0,0.2,0.3,0.5,0.7)synthesized by a high-temperature solid-phase method on the structure,morphology,electrochemical performance of graphite‖LiFePO_(4)battery.The X-ray diffraction(XRD)refinement result demonstrated that Cu substitution strategy could be favorable for eliminating the NiO_(x)impurity phase and weakening Li-O bond.Analysis on density of states(DOS)indicates that Cu substitution is good for enhancing the electronic conductivity,as well as reducing the delithi-ation voltage polarization confirmed by electrochemical characterizations.Therefore,the optimal Li_(2)Ni_(0.7)Cu_(0.3)O_(2)delivered a high delithiation capacity of 437 mAh·g^(-1),around 8%above that of the pristine Li_(2)NiO_(2).Furthermore,a graphite‖LiFePO_(4)pouch cell with a nominal capacity of 3000 mAh demonstrated a notably improved reversible capacity,energy density and cycle life through introducing 2 wt%Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive,delivering a 6.2 mAh·g^(-1)higher initial discharge capacity and achieving around 5%improvement in capacity retentnion at 0.5P over 1000 cycles.Additionally,the post-mortem analyses testified that the Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive could suppress solid electrolyte interphase(SEI)decomposition and homogenize the Li distribution,which benefits to stabilizing interface between graphite and electrolyte,and alleviating dendritic Li plating.In conclusion,the Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive may offer advantages such as lower cost,lower delithiation voltage and higher prelithiation capacity compared with Li_(2)NiO_(2),making it a promising candidate of cathode prelithiation additive for next-generation LIBs.展开更多
文摘心脏磁共振成像(cardiac magnetic resonance,CMR)过程中患者误动、异常幅度的呼吸运动、心律失常会造成CMR图像质量下降,为解决现有的CMR图像增强网络需要人为制作配对数据,且图像增强后部分组织纹理细节丢失的问题,提出了基于空频域特征学习的循环一致性生成对抗网络(cycle-consistent generative adversavial network based on spatial-frequency domain feature learning,SFFL-CycleGAN).研究结果表明,该网络无须人为制作配对数据集,增强后的CMR图像组织纹理细节丰富,在结构相似度(structural similarity,SSIM)和峰值信噪比(peak signal to noise ratio,PSNR)等方面均优于现有的配对训练网络以及原始的CycleGAN网络,图像增强效果好,有效助力病情诊断.
基金Project(2017YFC0405100)supported by the National Key Research and Development Program of ChinaProjects(51879166,51709185,51909170)supported by the National Natural Science Foundation of China+1 种基金Project(SKLFSE201909)supported by the Open Research Fund Program of State Key Laboratory of Permafrost Engineering,ChinaProject(2018M640500)supported by Postdoctoral Science Foundation of China。
文摘Seepage is one of the main causes for the deformation and instability of canal slopes in Xinjiang,China.In this study,centrifugal model tests under wetting-drying(WD)and wetting-drying-freezing-thawing(WDFT)cycles were performed to investigate the water infiltration characteristics below a canal.The results show that the shallow soil of the canal models was fully saturated in the wetting process.Compared with the canal model under the WD cycles,the canal model under the WDFT cycles had larger saturated areas and a higher degree of saturation below the canal top after each cycle,indicating that the freezing-thawing(FT)process in the WDFT cycles promoted the water infiltration behavior below the canal slope.The cracks on the surface of the canal model under the cyclic action of WDFT developed further and had a higher connectivity,which provided the conditions for slope instability from a transverse tensile crack running through the canal top.On this basis,a field test was conducted to understand the water infiltration distribution below a typical canal in Xinjiang,China,which also verified the accuracy of the centrifugal results.This study provides a preliminary basis for the maintenance and seepage treatment of canals in Xinjiang,China.
基金supported by the Fundamental Research Funds for the Central Universities(WK2090000055)Anhui Provincial Natural Science Foundation of China(2308085QG231).
文摘As a negative electrode material for lithium-ion batteries,silicon monoxide(SiO)suffers from dramatic volume changes during cycling,causing excessive stress within the electrode and resulting in electrode deformation and fragmentation.This ultimately leads to a decrease in cell capacity.The trends of volume expansion and capacity change of the SiO/graphite(SiO/C)composite electrode during cycling were investigated via in situ expansion monitoring.First,a series of expansion test schemes were designed,and the linear relationship between negative electrode expansion and cell capacity degradation was quantitatively analyzed.Then,the effects of different initial pressures on the long-term cycling performance of the cell were evaluated.Finally,the mechanism of their effects was analyzed by scanning electron microscope.The results show that after 50 cycles,the cell capacity decreases from 2.556 mAh to 1.689 mAh,with a capacity retention ratio(CRR)of only 66.08%.A linear relationship between the capacity retention ratio and thickness expansion was found.Electrochemical measurements and scanning electron microscope images demonstrate that intense stress inhibits the lithiation of the negative electrode and that the electrode is more susceptible to irreversible damage during cycling.Overall,these results reveal the relationship between the cycling performance of SiO and the internal pressure of the electrode from a macroscopic point of view,which provides some reference for the application of SiO/C composite electrodes in lithium-ion batteries.
基金Projects(52378392,52478390)supported by the National Natural Science Foundation of ChinaProject(2024J08213)supported by the Natural Science Foundation of Fujian Province,China+1 种基金Project(00387088)supported by the“Foal Eagle Program”Youth Top-notch Talent Project of Fujian Province,ChinaProject(GY-Z23072)supported by the Scientific Research Foundation of Fujian University of Technology,China。
文摘Gypsum rocks are highly susceptible to mechanical deterioration under the coupled effects of wet-dry(W-D)cycles and flow rates,which significantly influence the stability of underground excavations.Despite extensive research on the effects of W-D cycles,the coupling influence of flow rates and W-D cycles on gypsum rocks remains poorly understood.This study investigates the mechanical behavior and deterioration mechanisms of gypsum rocks subjected to varying W-D cycles and flow rate conditions.Axial compression tests,along with nuclear magnetic resonance(NMR)techniques,were employed to analyze the stress-strain response and microstructural changes.Based on the disturbed state concept(DSC)theory,a W-D deterioration model and a DSC-based constitutive model were developed to describe the degradation trends and mechanical responses of gypsum rocks under different conditions.The results demonstrate that key mechanical indices,elastic modulus,cohesion,uniaxial compressive strength(UCS),and internal friction angle,exhibit logarithmic declines with increasing W-D cycles,with higher flow rates accelerating the deterioration process.The theoretical models accurately capture the nonlinear compaction behavior,peak stress,and post-peak response of gypsum specimens.This study provides valuable insights for predicting the mechanical behavior of gypsum rocks and improving the stability assessments of underground structures under complex environmental conditions.
基金Project(41877240)supported by the National Natural Science Foundation of China。
文摘As a typical sedimentary soft rock,mudstone has the characteristics of being easily softened and disintegrated under the effect of wetting and drying(WD).The first cycle of WD plays an important role in the entire WD cycles.X-ray micro-computed tomography(micro-CT)was used as a non-destructive tool to quantitatively analyze microstructural changes of the mudstone due to the first cycle of WD.The test results show that WD leads to an increase of pore volume and pore connectivity in the mudstone.The porosity and fractal dimension of each slice of mudstone not only increase in value,but also in fluctuation amplitude.The pattern of variation in the frequency distribution of the equivalent radii of connected,isolated pores and pore throats in mudstone under WD effect satisfies the Gaussian distribution.Under the effect of WD,pores and pore throats with relatively small sizes increase the most.The sphericity of the pores in mudstones is positively correlated with the pore radius.The WD effect transforms the originally angular and flat pores into round and regular pores.This paper can provide a reference for the study of the deterioration and catastrophic mechanisms of mudstone under wetting and drying cycles.
基金Project(52479115)supported by the National Natural Science Foundation of ChinaProject(2024SF-YBXM-615)supported by the Key Research and Development Program of Shaanxi Province,China+1 种基金Project(2022943)supported by the Youth Innovation Team of Shaanxi Universities,ChinaProject(300102283721)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Using solid waste as a substitute for conventional cement has become an important way to reduce carbon emissions.This paper attempted to utilize steel slag(SS)and fly ash(FA)as supplementary cementitious material by utilizing CO_(2)mineralization curing technology.This study examined the dominant and interactive influences of the residual water/cement ratio,CO_(2)pressure,curing time,and SS content on the mechanical properties and CO_(2)uptake rate of CO_(2)mineralization curing SS-FA-Portland cement ternary paste specimens.Additionally,microstructural development was analyzed.The findings demonstrated that each factor significantly affected compressive strength and CO_(2)uptake rate,with factor interactions becoming more pronounced at higher SS dosages(>30%),lower residual water/cement ratios(0.1-0.15),and CO_(2)pressures of 0.1-0.3 MPa.Microscopic examinations revealed that mineralization primarily yielded CaCO_(3)and silica gel.The residual w/c ratio and SS content significantly influenced the CaCO_(3)content and crystallinity of the mineralization products.Post-mineralization curing,the percentage of pores larger than 50 nm significantly decreased,the proportion of harmless pores smaller than 20 nm increased,and pore structure improved.This study also found that using CO_(2)mineralization curing SS-FA-Portland cement solid waste concrete can significantly reduce the negative impact on the environment.
基金supported by the Significant Science and Technology Project in Xiamen(Future Industry Field)(Grant No.3502Z20231057).
文摘Lithium nickel oxide(Li_(2)NiO_(2)),as a sacrificial cathode prelithiation additive,has been used to compensate for the lithium loss for improving the lifespan of lithium-ion batteries(LIBs).However,high-cost Li_(2)NiO_(2)suffers from inferior delithiation kinetics during the first cycle.Herein,we investigated the effects of the cost-effective copper substituted Li_(2)Ni_(1-x)Cu_(x)O_(2)(x=0,0.2,0.3,0.5,0.7)synthesized by a high-temperature solid-phase method on the structure,morphology,electrochemical performance of graphite‖LiFePO_(4)battery.The X-ray diffraction(XRD)refinement result demonstrated that Cu substitution strategy could be favorable for eliminating the NiO_(x)impurity phase and weakening Li-O bond.Analysis on density of states(DOS)indicates that Cu substitution is good for enhancing the electronic conductivity,as well as reducing the delithi-ation voltage polarization confirmed by electrochemical characterizations.Therefore,the optimal Li_(2)Ni_(0.7)Cu_(0.3)O_(2)delivered a high delithiation capacity of 437 mAh·g^(-1),around 8%above that of the pristine Li_(2)NiO_(2).Furthermore,a graphite‖LiFePO_(4)pouch cell with a nominal capacity of 3000 mAh demonstrated a notably improved reversible capacity,energy density and cycle life through introducing 2 wt%Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive,delivering a 6.2 mAh·g^(-1)higher initial discharge capacity and achieving around 5%improvement in capacity retentnion at 0.5P over 1000 cycles.Additionally,the post-mortem analyses testified that the Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive could suppress solid electrolyte interphase(SEI)decomposition and homogenize the Li distribution,which benefits to stabilizing interface between graphite and electrolyte,and alleviating dendritic Li plating.In conclusion,the Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive may offer advantages such as lower cost,lower delithiation voltage and higher prelithiation capacity compared with Li_(2)NiO_(2),making it a promising candidate of cathode prelithiation additive for next-generation LIBs.
基金Supported by the Research and Development Projects of Science and Technology of Hebei Province(06242188D-2)the Natural Science Foundation of Hebei Province(F2007000221)