InAs/AlAs superlattice structures have significant potential for application in low-noise avalanche photodetectors.With their performance in practical applications linked to the fundamental physical properties of carr...InAs/AlAs superlattice structures have significant potential for application in low-noise avalanche photodetectors.With their performance in practical applications linked to the fundamental physical properties of carrier relaxation time,this study investigated the carrier relaxation times of InAs/AlAs superlattices across various monolayers,temperatures,and carrier concentrations.Our investigation indicated that relaxation times span several tens of picoseconds,confirming that high-quality interfaces do not significantly reduce relaxation times in the way defect states might.Moreover,our study demonstrates that adjustments to the superlattice period can effectively modulate both the bandgap and carrier relaxation times,potentially impacting the performance of avalanche photodiodes by altering the electron-phonon interaction pathways and bandgap width.We established that lower temperatures contribute to an increase in the bandgap and the suppression of high-frequency optical phonon vibrations,thereby lengthening the relaxation times.Additionally,our observations indicate that in InAs/AlAs superlattices,the relaxation time increases as the excitation power increases,owing to the phonon bottleneck effect.These insights into InAs/AlAs superlattice carrier dynamics highlight their applicability in enhancing avalanche photodetectors,and may contribute to the optimized design of superlattices for specific applications.展开更多
The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To th...The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To this end,this paper investigates the multi-timescale rolling opti-mization problem for IES integrated with HESS.Firstly,the architecture of IES with HESS is established,a comparative analysis is conducted to evaluate the advantages of the HESS over a single energy storage system(SESS)in stabilizing power fluctuations.Secondly,the dayahead and real-time scheduling cost functions of IES are established,the day-ahead scheduling mainly depends on operation costs of the components in IES,the real-time optimal scheduling adopts the Lya-punov optimization method to schedule the battery and hydrogen energy storage in each time slot,so as to minimize the real-time average scheduling operation cost,and the problem of day-ahead and real-time scheduling error,which caused by the uncertainty of the energy storage is solved by online optimization.Finally,the proposed model is verified to reduce the scheduling operation cost and the dispatching error by performing an arithmetic example analysis of the IES in Shanghai,which provides a reference for the safe and stable operation of the IES.展开更多
The acquisition of neutron time spectrum data plays a pivotal role in the precise quantification of uranium via prompt fission neutron uranium logging(PFNUL).However,the impact of the detector dead-time effect remains...The acquisition of neutron time spectrum data plays a pivotal role in the precise quantification of uranium via prompt fission neutron uranium logging(PFNUL).However,the impact of the detector dead-time effect remains paramount in the accurate acquisition of the neutron time spectrum.Therefore,it is imperative for neutron logging instruments to establish a dead-time correction method that is not only uncomplicated but also practical and caters to various logging sites.This study has formulated an innovative equation for determining dead time and introduced a dead-time correction method for the neutron time spectrum,called the“dual flux method.”Using this approach,a logging instrument captures two neutron time spectra under disparate neutron fluxes.By carefully selecting specific“windows”on the neutron time spectrum,the dead time can be accurately ascertained.To substantiate its efficacy and discern the influencing factors,experiments were conducted utilizing a deuterium-tritium(D-T)neutron source,a Helium-3(3He)detector,and polyethylene shielding to collate and analyze the neutron time spectrum under varying neutron fluxes(at high voltages).The findings underscore that the“height”and“spacing”of the two windows are the most pivotal influencing factors.Notably,the“height”(fd)should surpass 2,and the“spacing”twd should exceed 200μs.The dead time of the 3 He detector determined in the experiment was 7.35μs.After the dead-time correction,the deviation of the decay coefficients from the theoretical values for the neutron time spectrum under varying neutron fluxes decreased from 12.4%to within 5%.Similarly,for the PFNUL instrument,the deviation in the decay coefficients decreased from 22.94 to 0.49%after correcting for the dead-time effect.These results demonstrate the exceptional efficacy of the proposed method in ensuring precise uranium quantification.The dual flux method was experimentally validated as a universal approach applicable to pulsed neutron logging instruments and holds immense significance for uranium exploration.展开更多
For non-stationary complex dynamic systems,a standardized algorithm is developed to compute time correlation functions,addressing the limitations of traditional methods reliant on the stationary assumption.The propose...For non-stationary complex dynamic systems,a standardized algorithm is developed to compute time correlation functions,addressing the limitations of traditional methods reliant on the stationary assumption.The proposed algorithm integrates two-point and multi-point time correlation functions into a unified framework.Further,it is verified by a practical application in complex financial systems,demonstrating its potential in various complex dynamic systems.展开更多
We experimentally analyze the effect of the optical power on the time delay signature identification and the random bit generation in chaotic semiconductor laser with optical feedback.Due to the inevitable noise durin...We experimentally analyze the effect of the optical power on the time delay signature identification and the random bit generation in chaotic semiconductor laser with optical feedback.Due to the inevitable noise during the photoelectric detection and analog-digital conversion,the varying of output optical power would change the signal to noise ratio,then impact time delay signature identification and the random bit generation.Our results show that,when the optical power is less than-14 dBm,with the decreasing of the optical power,the actual identified time delay signature degrades and the entropy of the chaotic signal increases.Moreover,the extracted random bit sequence with lower optical power is more easily pass through the randomness testing.展开更多
The attenuation of the acoustic activity in marble specimens under uniaxial compressive loadingunloading loops is quantified in juxtaposition to that of the electric activity.In parallel,the existence of"pre-fail...The attenuation of the acoustic activity in marble specimens under uniaxial compressive loadingunloading loops is quantified in juxtaposition to that of the electric activity.In parallel,the existence of"pre-failure indiceso"warning about entrance into a critical stage,that of impending fracture,is explored.The acoustic activity is quantified in terms of the normalized number of acoustic hits,their average rate of production and their cumulative energy,and,the cumulative counts and their average rate of change.The electric activity is studied in terms of the pressure stimulated currents and the electric charge released.The analysis revealed that the acoustic and electric activities are linearly correlated to each other,suggesting that they are different manifestations of the same damage mechanisms.In addition,Kaiser's effect,governing the acoustic activity,is found to govern,also,the electric activity.Moreover,it is concluded that entrance into the critical stage is safely predicted by means of a simple criterion,based on the evolution of the average rate of change of the normalized cumulative counts in the natural time domain.These predictions are almost identical with those of the criterion based on the "varianceo" and the "entropies" of the time series of acoustic events in this domain.展开更多
Site index(SI)is determined from the top height development and is a proxy for forest productivity,defined as the expected top height for a given species at a certain index age.In Norway,an index age of 40 years is us...Site index(SI)is determined from the top height development and is a proxy for forest productivity,defined as the expected top height for a given species at a certain index age.In Norway,an index age of 40 years is used.By using bi-temporal airborne laser scanning(ALS)data,SI can be determined using models estimated from SI observed on field plots(the direct approach)or from predicted top heights at two points in time(the height differential approach).Time series of ALS data may enhance SI determination compared to conventional methods used in operational forest inventory by providing more detailed information about the top height development.We used longitudinal data comprising spatially consistent field and ALS data collected from training plots in 1999,2010,and 2022 to determine SI using the direct and height differential approaches using all combinations of years and performed an external validation.We also evaluated the use of data assimilation.Values of root mean square error obtained from external validation were in the ranges of 16.3%–21.4%and 12.8%–20.6%of the mean fieldregistered SI for the direct approach and the height differential approach,respectively.There were no statistically significant effects of time series length or the number of points in time on the obtained accuracies.Data assimilation did not result in any substantial improvement in the obtained accuracies.Although a time series of ALS data did not yield greater accuracies compared to using only two points in time,a larger proportion of the study area could be used in ALS-based determination of SI when a time series was available.This was because areas that were unsuitable for SI determination between two points in time could be subject to SI determination based on data from another part of the time series.展开更多
To guarantee secure communication against eavesdropping and malicious attack,an artificial noise(AN)-aided frequency-hopping(FH)architecture is adopted in this article.But the inevitable time misalignment between the ...To guarantee secure communication against eavesdropping and malicious attack,an artificial noise(AN)-aided frequency-hopping(FH)architecture is adopted in this article.But the inevitable time misalignment between the received signal and locally reconstructed AN will deteriorate the AN cancellation performance,yielding significant secrecy degradation at the FH receiver.In view of this,first,the AN cancellation performance under time misalignment is evaluated via signal to AN-plus-noise ratio,and the system secrecy is analyzed via secrecy rate.Then,to mitigate the performance degradation raised by time misalignment,the transmitting power allocation scheme for AN and confidential signal(CS)is optimized,and the optimal hopping period is designed.Notably,the obtained conclusions in both the performance evaluation and transmitter optimization sections hold no matter whether the eavesdropper can realize FH synchronization or not.Simulations verify that time misalignment will raise non-negligible performance degradation.Besides,the power ratio of AN to CS should decrease as time misalignment increases,and for perfect time synchronization,the transmitting power of AN and CS should be equivalent.In addition,a longer hopping period is preferred for secrecy enhancement when time misalignment gets exacerbated.展开更多
In broadband coherent anti-Stokes Raman scattering (CARS) spectroscopy with supercontinuum (SC), the simultaneously detectable spectral coverage is limited by the spectral continuity and the simultaneity of variou...In broadband coherent anti-Stokes Raman scattering (CARS) spectroscopy with supercontinuum (SC), the simultaneously detectable spectral coverage is limited by the spectral continuity and the simultaneity of various spectral components of SC in an enough bandwidth. By numerical simulations, the optimal experimental conditions for improving the SC are obtained. The broadband time-resolved CARS spectrography based on the SC with required temporal and spectral distributions is realised. The global molecular vibrational spectrum with well suppressed nonresonant background noise can be obtained in a single measurement. At the same time, the measurements of dephasing times of various molecular vibrational modes can be conveniently achieved from intensities of a sequence of time-resolved CARS signals. It will be more helpful to provide a complete picture of molecular vibrations, and to exhibit a potential to understand not only both the solvent dynamics and the solute-solvent interactions, but also the mechanisms of chemical reactions in the fields of biology, chemistry and material science.展开更多
In this paper,we discuss on the convergence and approximation of an α times integrated semigroups. The Trotter kato theorems for an α times integrated semigroups are obtained.
Background Key performance indices such as door-to-balloon times have long been recognized as quality metrics in reducing time to care for patients with acute coronary syndromes(ACS). In the situation where patients d...Background Key performance indices such as door-to-balloon times have long been recognized as quality metrics in reducing time to care for patients with acute coronary syndromes(ACS). In the situation where patients do not present to a facility capable of 24/7 percutaneous coronary interventions(PCI) delays in time to therapy can exceed the recommendation of 90 min or less. This study aimed to evaluate the impact of transfers on performance indices for patients diagnosed with ST-segment elevation myocardial infarction(STEMI). Methods Over a seven month collection period, all patients presenting with symptoms suggestive of ACS and admitted for PCI were studied. Patients were divided into dichotomous groups of direct presentations or transfers from a secondary non-PCI capable hospital with key times recorded, including symptom-onset, first hospital and PCI-capable hospital arrival and balloon inflation times to evaluate time of treatment for STEMI patients. Results Of the 87 patients diagnosed with STEMI, transferred patients experienced statistically significant delays in symptom-onset to the PCI-capable hospital(PCI-H) arrival(215 vs. 95 min, P < 0.001), symptom-onset to balloon inflation(225 vs. 160 min, P = 0.009) and first hospital arrival to balloon inflation times(106 vs. 56 min, P < 0.001). Only 28%(n = 9) of transferred patients underwent balloon inflation within 90 min from first hospital arrival, while 60%(n = 19) did within 120 min, although all received balloon inflation within 90 min from arrival at the PCI-H. After controlling for confounding factors of socio-economic status, presentation date/time and diagnostic category, transferred patients experienced an average 162% longer delays from symptom-onset to PCI-H door arrival, and 98% longer delays in symptom-onset to balloon inflation;compared to patients who present directly to the PCI-H. No statistically significant differences were noted between transferred and direct patients when measured from PCI-H door-to-balloon times. Conclusions This study shows that transferred patients experience a greater overall system delay, compared to patients who present directly for PCI, significantly increasing their time to treatment and therefore infarct times. Despite the majority of transfers experiencing pre-hospital activation, their treatment hospital arrival to balloon times are no less than direct presenters after controlling for confounding factors, further compounding the overall delay to therapy.展开更多
A deep-learning-based framework is proposed to predict the impedance response and underlying electrochemical behavior of the reversible protonic ceramic cell(PCC) across a wide variety of different operating condition...A deep-learning-based framework is proposed to predict the impedance response and underlying electrochemical behavior of the reversible protonic ceramic cell(PCC) across a wide variety of different operating conditions.Electrochemical impedance spectra(EIS) of PCCs were first acquired under a variety of opera ting conditions to provide a dataset containing 36 sets of EIS spectra for the model.An artificial neural network(ANN) was then trained to model the relationship between the cell operating condition and EIS response.Finally,ANN model-predicted EIS spectra were analyzed by the distribution of relaxation times(DRT) and compared to DRT spectra obtained from the experimental EIS data,enabling an assessment of the accumulative errors from the predicted EIS data vs the predicted DRT.We show that in certain cases,although the R^(2)of the predicted EIS curve may be> 0.98,the R^(2)of the predicted DRT may be as low as~0.3.This can lead to an inaccurate ANN prediction of the underlying time-resolved electrochemical response,although the apparent accuracy as evaluated from the EIS prediction may seem acceptable.After adjustment of the parameters of the ANN framework,the average R^(2)of the DRTs derived from the predicted EIS can be improved to 0.9667.Thus,we demonstrate that a properly tuned ANN model can be used as an effective tool to predict not only the EIS,but also the DRT of complex electrochemical systems.展开更多
The representation of additive functionals and local times for jump Markov processes are obtained. The results of uniformly functional moderate deviation and their applications to birth-death processes are also presen...The representation of additive functionals and local times for jump Markov processes are obtained. The results of uniformly functional moderate deviation and their applications to birth-death processes are also presented.展开更多
By using Lamperti's bijection between self-similar Markov processes and L@vy processes~ we prove finiteness of moments and asymptotic behavior of passage times for increasing self-similar Markov processes valued in ...By using Lamperti's bijection between self-similar Markov processes and L@vy processes~ we prove finiteness of moments and asymptotic behavior of passage times for increasing self-similar Markov processes valued in (0, ~). We Mso investigate the behavior of the process when it crosses a level. A limit theorem concerning the distribution of the process immediately before it crosses some level is proved. Some useful examples are given.展开更多
The main challenge for container ports is the planning required for berthing container ships while docked in port.Growth of containerization is creating problems for ports and container terminals as they reach their c...The main challenge for container ports is the planning required for berthing container ships while docked in port.Growth of containerization is creating problems for ports and container terminals as they reach their capacity limits of various resources which increasingly leads to traffic and port congestion.Good planning and management of container terminal operations reduces waiting time for liner ships.Reducing the waiting time improves the terminal’s productivity and decreases the port difficulties.Two important keys to reducing waiting time with berth allocation are determining suitable access channel depths and increasing the number of berths which in this paper are studied and analyzed as practical solutions.Simulation based analysis is the only way to understand how various resources interact with each other and how they are affected in the berthing time of ships.We used the Enterprise Dynamics software to produce simulation models due to the complexity and nature of the problems.We further present case study for berth allocation simulation of the biggest container terminal in Iran and the optimum access channel depth and the number of berths are obtained from simulation results.The results show a significant reduction in the waiting time for container ships and can be useful for major functions in operations and development of container ship terminals.展开更多
基金supported by the Science and Technology Innovation Program of Hunan Province(Grant No.2021RC4026)。
文摘InAs/AlAs superlattice structures have significant potential for application in low-noise avalanche photodetectors.With their performance in practical applications linked to the fundamental physical properties of carrier relaxation time,this study investigated the carrier relaxation times of InAs/AlAs superlattices across various monolayers,temperatures,and carrier concentrations.Our investigation indicated that relaxation times span several tens of picoseconds,confirming that high-quality interfaces do not significantly reduce relaxation times in the way defect states might.Moreover,our study demonstrates that adjustments to the superlattice period can effectively modulate both the bandgap and carrier relaxation times,potentially impacting the performance of avalanche photodiodes by altering the electron-phonon interaction pathways and bandgap width.We established that lower temperatures contribute to an increase in the bandgap and the suppression of high-frequency optical phonon vibrations,thereby lengthening the relaxation times.Additionally,our observations indicate that in InAs/AlAs superlattices,the relaxation time increases as the excitation power increases,owing to the phonon bottleneck effect.These insights into InAs/AlAs superlattice carrier dynamics highlight their applicability in enhancing avalanche photodetectors,and may contribute to the optimized design of superlattices for specific applications.
基金supported by the National Natural Science Foundation of China(No.12171145)。
文摘The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To this end,this paper investigates the multi-timescale rolling opti-mization problem for IES integrated with HESS.Firstly,the architecture of IES with HESS is established,a comparative analysis is conducted to evaluate the advantages of the HESS over a single energy storage system(SESS)in stabilizing power fluctuations.Secondly,the dayahead and real-time scheduling cost functions of IES are established,the day-ahead scheduling mainly depends on operation costs of the components in IES,the real-time optimal scheduling adopts the Lya-punov optimization method to schedule the battery and hydrogen energy storage in each time slot,so as to minimize the real-time average scheduling operation cost,and the problem of day-ahead and real-time scheduling error,which caused by the uncertainty of the energy storage is solved by online optimization.Finally,the proposed model is verified to reduce the scheduling operation cost and the dispatching error by performing an arithmetic example analysis of the IES in Shanghai,which provides a reference for the safe and stable operation of the IES.
基金supported by the National Natural Science Foundation of China(No.42374226)Jiangxi Provincial Natural Science Foundation(Nos.20232BAB201043 and 20232BCJ23006)+2 种基金Nuclear Energy Development Project(20201192-01)National Key Laboratory of Uranium Resource Exploration-Mining and Nuclear Remote Sensing(ECUT)(2024QZ-TD-09)Fundamental Science on Radioactive Geology and Exploration Technology Laboratory(2022RGET20).
文摘The acquisition of neutron time spectrum data plays a pivotal role in the precise quantification of uranium via prompt fission neutron uranium logging(PFNUL).However,the impact of the detector dead-time effect remains paramount in the accurate acquisition of the neutron time spectrum.Therefore,it is imperative for neutron logging instruments to establish a dead-time correction method that is not only uncomplicated but also practical and caters to various logging sites.This study has formulated an innovative equation for determining dead time and introduced a dead-time correction method for the neutron time spectrum,called the“dual flux method.”Using this approach,a logging instrument captures two neutron time spectra under disparate neutron fluxes.By carefully selecting specific“windows”on the neutron time spectrum,the dead time can be accurately ascertained.To substantiate its efficacy and discern the influencing factors,experiments were conducted utilizing a deuterium-tritium(D-T)neutron source,a Helium-3(3He)detector,and polyethylene shielding to collate and analyze the neutron time spectrum under varying neutron fluxes(at high voltages).The findings underscore that the“height”and“spacing”of the two windows are the most pivotal influencing factors.Notably,the“height”(fd)should surpass 2,and the“spacing”twd should exceed 200μs.The dead time of the 3 He detector determined in the experiment was 7.35μs.After the dead-time correction,the deviation of the decay coefficients from the theoretical values for the neutron time spectrum under varying neutron fluxes decreased from 12.4%to within 5%.Similarly,for the PFNUL instrument,the deviation in the decay coefficients decreased from 22.94 to 0.49%after correcting for the dead-time effect.These results demonstrate the exceptional efficacy of the proposed method in ensuring precise uranium quantification.The dual flux method was experimentally validated as a universal approach applicable to pulsed neutron logging instruments and holds immense significance for uranium exploration.
基金Project supported by the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(Grant No.GZC20231050)the National Natural Science Foundation of China(Grant Nos.12175193 and 11905183)the 13th Five-year plan for Education Science Funding of Guangdong Province(Grant No.2021GXJK349)。
文摘For non-stationary complex dynamic systems,a standardized algorithm is developed to compute time correlation functions,addressing the limitations of traditional methods reliant on the stationary assumption.The proposed algorithm integrates two-point and multi-point time correlation functions into a unified framework.Further,it is verified by a practical application in complex financial systems,demonstrating its potential in various complex dynamic systems.
基金Project supported in part by the National Natural Science Foundation of China(Grant Nos.62005129 and 62175116)。
文摘We experimentally analyze the effect of the optical power on the time delay signature identification and the random bit generation in chaotic semiconductor laser with optical feedback.Due to the inevitable noise during the photoelectric detection and analog-digital conversion,the varying of output optical power would change the signal to noise ratio,then impact time delay signature identification and the random bit generation.Our results show that,when the optical power is less than-14 dBm,with the decreasing of the optical power,the actual identified time delay signature degrades and the entropy of the chaotic signal increases.Moreover,the extracted random bit sequence with lower optical power is more easily pass through the randomness testing.
文摘The attenuation of the acoustic activity in marble specimens under uniaxial compressive loadingunloading loops is quantified in juxtaposition to that of the electric activity.In parallel,the existence of"pre-failure indiceso"warning about entrance into a critical stage,that of impending fracture,is explored.The acoustic activity is quantified in terms of the normalized number of acoustic hits,their average rate of production and their cumulative energy,and,the cumulative counts and their average rate of change.The electric activity is studied in terms of the pressure stimulated currents and the electric charge released.The analysis revealed that the acoustic and electric activities are linearly correlated to each other,suggesting that they are different manifestations of the same damage mechanisms.In addition,Kaiser's effect,governing the acoustic activity,is found to govern,also,the electric activity.Moreover,it is concluded that entrance into the critical stage is safely predicted by means of a simple criterion,based on the evolution of the average rate of change of the normalized cumulative counts in the natural time domain.These predictions are almost identical with those of the criterion based on the "varianceo" and the "entropies" of the time series of acoustic events in this domain.
基金part of the Centre for Research-based Innovation SmartForest:Bringing Industry 4.0 to the Norwegian forest sector(NFR SFI project no.309671,smartforest.no)。
文摘Site index(SI)is determined from the top height development and is a proxy for forest productivity,defined as the expected top height for a given species at a certain index age.In Norway,an index age of 40 years is used.By using bi-temporal airborne laser scanning(ALS)data,SI can be determined using models estimated from SI observed on field plots(the direct approach)or from predicted top heights at two points in time(the height differential approach).Time series of ALS data may enhance SI determination compared to conventional methods used in operational forest inventory by providing more detailed information about the top height development.We used longitudinal data comprising spatially consistent field and ALS data collected from training plots in 1999,2010,and 2022 to determine SI using the direct and height differential approaches using all combinations of years and performed an external validation.We also evaluated the use of data assimilation.Values of root mean square error obtained from external validation were in the ranges of 16.3%–21.4%and 12.8%–20.6%of the mean fieldregistered SI for the direct approach and the height differential approach,respectively.There were no statistically significant effects of time series length or the number of points in time on the obtained accuracies.Data assimilation did not result in any substantial improvement in the obtained accuracies.Although a time series of ALS data did not yield greater accuracies compared to using only two points in time,a larger proportion of the study area could be used in ALS-based determination of SI when a time series was available.This was because areas that were unsuitable for SI determination between two points in time could be subject to SI determination based on data from another part of the time series.
基金supported in part by the National Natural Science Foundation of China under Grant 62071094in part by the National Key Laboratory of Wireless Communications Foundation under Grant IFN202402in part by the Postdoctoral Fellowship Program(Grade C)of China Postdoctoral Science Foundation under Grant GZC20240217.
文摘To guarantee secure communication against eavesdropping and malicious attack,an artificial noise(AN)-aided frequency-hopping(FH)architecture is adopted in this article.But the inevitable time misalignment between the received signal and locally reconstructed AN will deteriorate the AN cancellation performance,yielding significant secrecy degradation at the FH receiver.In view of this,first,the AN cancellation performance under time misalignment is evaluated via signal to AN-plus-noise ratio,and the system secrecy is analyzed via secrecy rate.Then,to mitigate the performance degradation raised by time misalignment,the transmitting power allocation scheme for AN and confidential signal(CS)is optimized,and the optimal hopping period is designed.Notably,the obtained conclusions in both the performance evaluation and transmitter optimization sections hold no matter whether the eavesdropper can realize FH synchronization or not.Simulations verify that time misalignment will raise non-negligible performance degradation.Besides,the power ratio of AN to CS should decrease as time misalignment increases,and for perfect time synchronization,the transmitting power of AN and CS should be equivalent.In addition,a longer hopping period is preferred for secrecy enhancement when time misalignment gets exacerbated.
基金Project supported by the National Natural Science Foundation of China(Grant No.60627003)the Foundation for Creative Team in Institution of Higher Education of Guangdong Province,China(Grant No.06CXTD009)
文摘In broadband coherent anti-Stokes Raman scattering (CARS) spectroscopy with supercontinuum (SC), the simultaneously detectable spectral coverage is limited by the spectral continuity and the simultaneity of various spectral components of SC in an enough bandwidth. By numerical simulations, the optimal experimental conditions for improving the SC are obtained. The broadband time-resolved CARS spectrography based on the SC with required temporal and spectral distributions is realised. The global molecular vibrational spectrum with well suppressed nonresonant background noise can be obtained in a single measurement. At the same time, the measurements of dephasing times of various molecular vibrational modes can be conveniently achieved from intensities of a sequence of time-resolved CARS signals. It will be more helpful to provide a complete picture of molecular vibrations, and to exhibit a potential to understand not only both the solvent dynamics and the solute-solvent interactions, but also the mechanisms of chemical reactions in the fields of biology, chemistry and material science.
文摘In this paper,we discuss on the convergence and approximation of an α times integrated semigroups. The Trotter kato theorems for an α times integrated semigroups are obtained.
文摘Background Key performance indices such as door-to-balloon times have long been recognized as quality metrics in reducing time to care for patients with acute coronary syndromes(ACS). In the situation where patients do not present to a facility capable of 24/7 percutaneous coronary interventions(PCI) delays in time to therapy can exceed the recommendation of 90 min or less. This study aimed to evaluate the impact of transfers on performance indices for patients diagnosed with ST-segment elevation myocardial infarction(STEMI). Methods Over a seven month collection period, all patients presenting with symptoms suggestive of ACS and admitted for PCI were studied. Patients were divided into dichotomous groups of direct presentations or transfers from a secondary non-PCI capable hospital with key times recorded, including symptom-onset, first hospital and PCI-capable hospital arrival and balloon inflation times to evaluate time of treatment for STEMI patients. Results Of the 87 patients diagnosed with STEMI, transferred patients experienced statistically significant delays in symptom-onset to the PCI-capable hospital(PCI-H) arrival(215 vs. 95 min, P < 0.001), symptom-onset to balloon inflation(225 vs. 160 min, P = 0.009) and first hospital arrival to balloon inflation times(106 vs. 56 min, P < 0.001). Only 28%(n = 9) of transferred patients underwent balloon inflation within 90 min from first hospital arrival, while 60%(n = 19) did within 120 min, although all received balloon inflation within 90 min from arrival at the PCI-H. After controlling for confounding factors of socio-economic status, presentation date/time and diagnostic category, transferred patients experienced an average 162% longer delays from symptom-onset to PCI-H door arrival, and 98% longer delays in symptom-onset to balloon inflation;compared to patients who present directly to the PCI-H. No statistically significant differences were noted between transferred and direct patients when measured from PCI-H door-to-balloon times. Conclusions This study shows that transferred patients experience a greater overall system delay, compared to patients who present directly for PCI, significantly increasing their time to treatment and therefore infarct times. Despite the majority of transfers experiencing pre-hospital activation, their treatment hospital arrival to balloon times are no less than direct presenters after controlling for confounding factors, further compounding the overall delay to therapy.
基金funding from the National Natural Science Foundation of China,China(12172104,52102226)the Shenzhen Science and Technology Innovation Commission,China(JCYJ20200109113439837)the Stable Supporting Fund of Shenzhen,China(GXWD2020123015542700320200728114835006)。
文摘A deep-learning-based framework is proposed to predict the impedance response and underlying electrochemical behavior of the reversible protonic ceramic cell(PCC) across a wide variety of different operating conditions.Electrochemical impedance spectra(EIS) of PCCs were first acquired under a variety of opera ting conditions to provide a dataset containing 36 sets of EIS spectra for the model.An artificial neural network(ANN) was then trained to model the relationship between the cell operating condition and EIS response.Finally,ANN model-predicted EIS spectra were analyzed by the distribution of relaxation times(DRT) and compared to DRT spectra obtained from the experimental EIS data,enabling an assessment of the accumulative errors from the predicted EIS data vs the predicted DRT.We show that in certain cases,although the R^(2)of the predicted EIS curve may be> 0.98,the R^(2)of the predicted DRT may be as low as~0.3.This can lead to an inaccurate ANN prediction of the underlying time-resolved electrochemical response,although the apparent accuracy as evaluated from the EIS prediction may seem acceptable.After adjustment of the parameters of the ANN framework,the average R^(2)of the DRTs derived from the predicted EIS can be improved to 0.9667.Thus,we demonstrate that a properly tuned ANN model can be used as an effective tool to predict not only the EIS,but also the DRT of complex electrochemical systems.
基金Research supported by the National Nature Science Foun- dation of China (10271091)
文摘The representation of additive functionals and local times for jump Markov processes are obtained. The results of uniformly functional moderate deviation and their applications to birth-death processes are also presented.
基金supported in part by the National Natural Science Foundation of China(1117126211171263)
文摘By using Lamperti's bijection between self-similar Markov processes and L@vy processes~ we prove finiteness of moments and asymptotic behavior of passage times for increasing self-similar Markov processes valued in (0, ~). We Mso investigate the behavior of the process when it crosses a level. A limit theorem concerning the distribution of the process immediately before it crosses some level is proved. Some useful examples are given.
文摘The main challenge for container ports is the planning required for berthing container ships while docked in port.Growth of containerization is creating problems for ports and container terminals as they reach their capacity limits of various resources which increasingly leads to traffic and port congestion.Good planning and management of container terminal operations reduces waiting time for liner ships.Reducing the waiting time improves the terminal’s productivity and decreases the port difficulties.Two important keys to reducing waiting time with berth allocation are determining suitable access channel depths and increasing the number of berths which in this paper are studied and analyzed as practical solutions.Simulation based analysis is the only way to understand how various resources interact with each other and how they are affected in the berthing time of ships.We used the Enterprise Dynamics software to produce simulation models due to the complexity and nature of the problems.We further present case study for berth allocation simulation of the biggest container terminal in Iran and the optimum access channel depth and the number of berths are obtained from simulation results.The results show a significant reduction in the waiting time for container ships and can be useful for major functions in operations and development of container ship terminals.