The rapid development of data communication in modern era demands secure exchange of information. Steganography is an established method for hiding secret data from an unauthorized access into a cover object in such a...The rapid development of data communication in modern era demands secure exchange of information. Steganography is an established method for hiding secret data from an unauthorized access into a cover object in such a way that it is invisible to human eyes. The cover object can be image, text, audio,or video. This paper proposes a secure steganography algorithm that hides a bitstream of the secret text into the least significant bits(LSBs) of the approximation coefficients of the integer wavelet transform(IWT) of grayscale images as well as each component of color images to form stego-images. The embedding and extracting phases of the proposed steganography algorithms are performed using the MATLAB software. Invisibility, payload capacity, and security in terms of peak signal to noise ratio(PSNR) and robustness are the key challenges to steganography. The statistical distortion between the cover images and the stego-images is measured by using the mean square error(MSE) and the PSNR, while the degree of closeness between them is evaluated using the normalized cross correlation(NCC). The experimental results show that, the proposed algorithms can hide the secret text with a large payload capacity with a high level of security and a higher invisibility. Furthermore, the proposed technique is computationally efficient and better results for both PSNR and NCC are achieved compared with the previous algorithms.展开更多
A muitisensor image fusion algorithm is described using 2-dimensional nonseparable wavelet frame (NWF) transform. The source muitisensor images are first decomposed by the NWF transform. Then, the NWF transform coef...A muitisensor image fusion algorithm is described using 2-dimensional nonseparable wavelet frame (NWF) transform. The source muitisensor images are first decomposed by the NWF transform. Then, the NWF transform coefficients of the source images are combined into the composite NWF transform coefficients. Inverse NWF transform is performed on the composite NWF transform coefficients in order to obtain the intermediate fused image. Finally, intensity adjustment is applied to the intermediate fused image in order to maintain the dynamic intensity range. Experiment resuits using real data show that the proposed algorithm works well in muitisensor image fusion.展开更多
A novel method for developing a reliable data driven soft sensor to improve the prediction accuracy of sulfur content in hydrodesulfurization(HDS) process was proposed. Therefore, an integrated approach using support ...A novel method for developing a reliable data driven soft sensor to improve the prediction accuracy of sulfur content in hydrodesulfurization(HDS) process was proposed. Therefore, an integrated approach using support vector regression(SVR) based on wavelet transform(WT) and principal component analysis(PCA) was used. Experimental data from the HDS setup were employed to validate the proposed model. The results reveal that the integrated WT-PCA with SVR model was able to increase the prediction accuracy of SVR model. Implementation of the proposed model delivers the best satisfactory predicting performance(EAARE=0.058 and R2=0.97) in comparison with SVR. The obtained results indicate that the proposed model is more reliable and more precise than the multiple linear regression(MLR), SVR and PCA-SVR.展开更多
An effective automatic target detection algorithm based on wavelet transform,which takes advantage of the localization and the orientation of wavelet analysis,is proposed.The algorithm detects the target in the vertic...An effective automatic target detection algorithm based on wavelet transform,which takes advantage of the localization and the orientation of wavelet analysis,is proposed.The algorithm detects the target in the vertical component of the wavelet transformation of the image.After mutual energy combination and sea clutter suppression through spatial weighting and thresholding,the target is located through maximum energy determination and its size is indicated through similarity measurement function of two overlapping windows.Experiment results show that the target can be detected by the algorithm in a single image frame and the better efficiency can be obtained also under the complicated backgrounds of existing the disturbances of cloud layer and fish scale light.展开更多
An orthogonal wavelet transform fractionally spaced blind equalization algorithm based on the optimization of genetic algorithm(WTFSE-GA) is proposed in viewof the lowconvergence rate,large steady-state mean square er...An orthogonal wavelet transform fractionally spaced blind equalization algorithm based on the optimization of genetic algorithm(WTFSE-GA) is proposed in viewof the lowconvergence rate,large steady-state mean square error and local convergence of traditional constant modulus blind equalization algorithm(CMA).The proposed algorithm can reduce the signal autocorrelation through the orthogonal wavelet transform of input signal of fractionally spaced blind equalizer,and decrease the possibility of CMA local convergence by using the global random search characteristics of genetic algorithm to optimize the equalizer weight vector.The proposed algorithm has the faster convergence rate and smaller mean square error compared with FSE and WT-FSE.The efficiency of the proposed algorithm is proved by computer simulation of underwater acoustic channels.展开更多
Aiming at the problem,i.e.infrared images own the characters of bad contrast ratio and fuzzy edges,a method to enhance the contrast of infrared image is given,which is based on stationary wavelet transform.After makin...Aiming at the problem,i.e.infrared images own the characters of bad contrast ratio and fuzzy edges,a method to enhance the contrast of infrared image is given,which is based on stationary wavelet transform.After making stationary wavelet transform to an infrared image,denoising is done by the proposed method of double-threshold shrinkage in detail coefficient matrixes that have high noisy intensity.For the approximation coefficient matrix with low noisy intensity,enhancement is done by the proposed method based on histogram.The enhanced image can be got by wavelet coefficient reconstruction.Furthermore,an evaluation criterion of enhancement performance is introduced.The results show that this algorithm ensures target enhancement and restrains additive Gauss white noise effectively.At the same time,its amount of calculation is small and operation speed is fast.展开更多
Extraction of flying target position information is the prerequisite for passive infrared guided missiles to track the target. The existing missile detection system senses the target's infrared radiation, and then...Extraction of flying target position information is the prerequisite for passive infrared guided missiles to track the target. The existing missile detection system senses the target's infrared radiation, and then the generated signal is sent to signal processing circuits for extracting the target position information. In order to improve anti-interference capacity of the detection system, an algorithm of module maximum edge detection based on the bi-orthogonal wavelets is proposed to replace its hardware. The signal can be decomposed in one layer, only its high frequency detail is reconstructed. After some calculations, the average target position can be obtained. The algorithm's real-time implementation with DSP is also discussed. To reduce the execution time, the program structure can be optimized with double buffers in memory. This implementation is verified by simulations. The results show that the method has only a small amount of calculations, can meet the requirements for finding out the target position in real-time and needs not the traditional processing circuit.展开更多
文摘The rapid development of data communication in modern era demands secure exchange of information. Steganography is an established method for hiding secret data from an unauthorized access into a cover object in such a way that it is invisible to human eyes. The cover object can be image, text, audio,or video. This paper proposes a secure steganography algorithm that hides a bitstream of the secret text into the least significant bits(LSBs) of the approximation coefficients of the integer wavelet transform(IWT) of grayscale images as well as each component of color images to form stego-images. The embedding and extracting phases of the proposed steganography algorithms are performed using the MATLAB software. Invisibility, payload capacity, and security in terms of peak signal to noise ratio(PSNR) and robustness are the key challenges to steganography. The statistical distortion between the cover images and the stego-images is measured by using the mean square error(MSE) and the PSNR, while the degree of closeness between them is evaluated using the normalized cross correlation(NCC). The experimental results show that, the proposed algorithms can hide the secret text with a large payload capacity with a high level of security and a higher invisibility. Furthermore, the proposed technique is computationally efficient and better results for both PSNR and NCC are achieved compared with the previous algorithms.
文摘A muitisensor image fusion algorithm is described using 2-dimensional nonseparable wavelet frame (NWF) transform. The source muitisensor images are first decomposed by the NWF transform. Then, the NWF transform coefficients of the source images are combined into the composite NWF transform coefficients. Inverse NWF transform is performed on the composite NWF transform coefficients in order to obtain the intermediate fused image. Finally, intensity adjustment is applied to the intermediate fused image in order to maintain the dynamic intensity range. Experiment resuits using real data show that the proposed algorithm works well in muitisensor image fusion.
文摘A novel method for developing a reliable data driven soft sensor to improve the prediction accuracy of sulfur content in hydrodesulfurization(HDS) process was proposed. Therefore, an integrated approach using support vector regression(SVR) based on wavelet transform(WT) and principal component analysis(PCA) was used. Experimental data from the HDS setup were employed to validate the proposed model. The results reveal that the integrated WT-PCA with SVR model was able to increase the prediction accuracy of SVR model. Implementation of the proposed model delivers the best satisfactory predicting performance(EAARE=0.058 and R2=0.97) in comparison with SVR. The obtained results indicate that the proposed model is more reliable and more precise than the multiple linear regression(MLR), SVR and PCA-SVR.
文摘An effective automatic target detection algorithm based on wavelet transform,which takes advantage of the localization and the orientation of wavelet analysis,is proposed.The algorithm detects the target in the vertical component of the wavelet transformation of the image.After mutual energy combination and sea clutter suppression through spatial weighting and thresholding,the target is located through maximum energy determination and its size is indicated through similarity measurement function of two overlapping windows.Experiment results show that the target can be detected by the algorithm in a single image frame and the better efficiency can be obtained also under the complicated backgrounds of existing the disturbances of cloud layer and fish scale light.
基金Sponsored by the Nature Science Foundation of Jiangsu(BK2009410)
文摘An orthogonal wavelet transform fractionally spaced blind equalization algorithm based on the optimization of genetic algorithm(WTFSE-GA) is proposed in viewof the lowconvergence rate,large steady-state mean square error and local convergence of traditional constant modulus blind equalization algorithm(CMA).The proposed algorithm can reduce the signal autocorrelation through the orthogonal wavelet transform of input signal of fractionally spaced blind equalizer,and decrease the possibility of CMA local convergence by using the global random search characteristics of genetic algorithm to optimize the equalizer weight vector.The proposed algorithm has the faster convergence rate and smaller mean square error compared with FSE and WT-FSE.The efficiency of the proposed algorithm is proved by computer simulation of underwater acoustic channels.
基金the Aeronautics Science Foundation of China(20070153005)Astronautics Science Technology Innovation Foundation of China(05C53005)
文摘Aiming at the problem,i.e.infrared images own the characters of bad contrast ratio and fuzzy edges,a method to enhance the contrast of infrared image is given,which is based on stationary wavelet transform.After making stationary wavelet transform to an infrared image,denoising is done by the proposed method of double-threshold shrinkage in detail coefficient matrixes that have high noisy intensity.For the approximation coefficient matrix with low noisy intensity,enhancement is done by the proposed method based on histogram.The enhanced image can be got by wavelet coefficient reconstruction.Furthermore,an evaluation criterion of enhancement performance is introduced.The results show that this algorithm ensures target enhancement and restrains additive Gauss white noise effectively.At the same time,its amount of calculation is small and operation speed is fast.
基金National Nature Science Foundation of China (50575175)
文摘Extraction of flying target position information is the prerequisite for passive infrared guided missiles to track the target. The existing missile detection system senses the target's infrared radiation, and then the generated signal is sent to signal processing circuits for extracting the target position information. In order to improve anti-interference capacity of the detection system, an algorithm of module maximum edge detection based on the bi-orthogonal wavelets is proposed to replace its hardware. The signal can be decomposed in one layer, only its high frequency detail is reconstructed. After some calculations, the average target position can be obtained. The algorithm's real-time implementation with DSP is also discussed. To reduce the execution time, the program structure can be optimized with double buffers in memory. This implementation is verified by simulations. The results show that the method has only a small amount of calculations, can meet the requirements for finding out the target position in real-time and needs not the traditional processing circuit.