Sediment deposition in the pumping station has a huge negative impact on unit operation.The three-dimensional CFD method has been used to simulate inlet structure flow in pumping station based on the Eulerian solid- l...Sediment deposition in the pumping station has a huge negative impact on unit operation.The three-dimensional CFD method has been used to simulate inlet structure flow in pumping station based on the Eulerian solid- liquid two-phase flow model. The numerical results of the preliminary scheme show that sediment deposition occurs in the forebay of pumping station because of poor flow pattern therein. In order to improve hydraulic configuration in the forebay,one modified measure reconstructs water diversion weir shape,and another measure sets a water retaining sill in the approach channel. The simulation results of the modified scheme prove that back flow in the forebay has been eliminated and the sediment deposition region has also been reduced.展开更多
Based on the characteristics of large flow rate , low head , short annual operation time , and high reliability of the city flood-control pumping stations , a new-type shaft tubular pumping system featuring a shaft su...Based on the characteristics of large flow rate , low head , short annual operation time , and high reliability of the city flood-control pumping stations , a new-type shaft tubular pumping system featuring a shaft suction box and a siphon-type discharge passage with a vacuum breaker as the cutoff device was developed , which possesses such advantages as simple structure , reliable cutoff , and high energy performance.Taking some pumping stations as the case studies , in the light of the specified operation conditions , the hydraulic optimal design of the shaft-type tubular pumping system was determined and the optimized shape of the system was recommended.The performance prediction based on the computational fluid dynamics methodology was determined and the model test verification was conducted.The results show that the predicted data agree with the experimental head and efficiency so that both methods can be used to determine the performance of a real pumping station.Finally , the in-situ measurements of a pumping station during the commissioning period further verified that the shaft-type tubular pumping station with a siphon discharge passage is of higher efficiency , more reliable and stable.展开更多
对已有梯级水电站进行融合改造,增建抽水蓄能机组形成梯级混合式抽水蓄能电站,是加快抽水蓄能发展的有效途径之一。梯级混合式抽水蓄能电站相较于常规梯级电站,新增具备抽水运行工况,相较于传统抽水蓄能电站,又具有更加复杂梯级水力联系...对已有梯级水电站进行融合改造,增建抽水蓄能机组形成梯级混合式抽水蓄能电站,是加快抽水蓄能发展的有效途径之一。梯级混合式抽水蓄能电站相较于常规梯级电站,新增具备抽水运行工况,相较于传统抽水蓄能电站,又具有更加复杂梯级水力联系,灵活的运行模式需要更为精细化的调度建模方法。为探索其典型调峰运行模式,提出了梯级混合式抽水蓄能电站短期调峰优化模型。该模型以电网剩余负荷峰谷差最小为目标,以机组为最小调度单元,针对不同类型机组的抽-发运行工况采用差异化建模。在模型求解方面,通过线性转换方法将原有非线性模型转化为混合整数线性规划(mixed integer linear programming,MILP)模型,然后在JAVA环境中运用CPLEX数学工具进行求解。以西南某梯级水电站为实例的分析结果表明,梯级混合式抽水蓄能电站相较于常规梯级电站电网剩余负荷峰谷差减少4.6%。展开更多
基金Chinese National Foundation of Natural Science-Key Projects(51339005)
文摘Sediment deposition in the pumping station has a huge negative impact on unit operation.The three-dimensional CFD method has been used to simulate inlet structure flow in pumping station based on the Eulerian solid- liquid two-phase flow model. The numerical results of the preliminary scheme show that sediment deposition occurs in the forebay of pumping station because of poor flow pattern therein. In order to improve hydraulic configuration in the forebay,one modified measure reconstructs water diversion weir shape,and another measure sets a water retaining sill in the approach channel. The simulation results of the modified scheme prove that back flow in the forebay has been eliminated and the sediment deposition region has also been reduced.
基金support by the 11th Five Year Key Project of China’s National Scientific Supporting Plan(Grant No.2006BAB04A03)the Hydraulic Engineering Project from the Water Resources Department of Jiangsu Province(Grant No.2010023)
文摘Based on the characteristics of large flow rate , low head , short annual operation time , and high reliability of the city flood-control pumping stations , a new-type shaft tubular pumping system featuring a shaft suction box and a siphon-type discharge passage with a vacuum breaker as the cutoff device was developed , which possesses such advantages as simple structure , reliable cutoff , and high energy performance.Taking some pumping stations as the case studies , in the light of the specified operation conditions , the hydraulic optimal design of the shaft-type tubular pumping system was determined and the optimized shape of the system was recommended.The performance prediction based on the computational fluid dynamics methodology was determined and the model test verification was conducted.The results show that the predicted data agree with the experimental head and efficiency so that both methods can be used to determine the performance of a real pumping station.Finally , the in-situ measurements of a pumping station during the commissioning period further verified that the shaft-type tubular pumping station with a siphon discharge passage is of higher efficiency , more reliable and stable.
文摘对已有梯级水电站进行融合改造,增建抽水蓄能机组形成梯级混合式抽水蓄能电站,是加快抽水蓄能发展的有效途径之一。梯级混合式抽水蓄能电站相较于常规梯级电站,新增具备抽水运行工况,相较于传统抽水蓄能电站,又具有更加复杂梯级水力联系,灵活的运行模式需要更为精细化的调度建模方法。为探索其典型调峰运行模式,提出了梯级混合式抽水蓄能电站短期调峰优化模型。该模型以电网剩余负荷峰谷差最小为目标,以机组为最小调度单元,针对不同类型机组的抽-发运行工况采用差异化建模。在模型求解方面,通过线性转换方法将原有非线性模型转化为混合整数线性规划(mixed integer linear programming,MILP)模型,然后在JAVA环境中运用CPLEX数学工具进行求解。以西南某梯级水电站为实例的分析结果表明,梯级混合式抽水蓄能电站相较于常规梯级电站电网剩余负荷峰谷差减少4.6%。