期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Scaling of weighted spectral distribution in weighted small-world networks
1
作者 Bo Jiao Xiao-Qun Wu 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第2期536-545,共10页
Many real-world systems can be modeled by weighted small-world networks with high clustering coefficients. Recent studies for rigorously analyzing the weighted spectral distribution(W SD) have focused on unweighted ... Many real-world systems can be modeled by weighted small-world networks with high clustering coefficients. Recent studies for rigorously analyzing the weighted spectral distribution(W SD) have focused on unweighted networks with low clustering coefficients. In this paper, we rigorously analyze the W SD in a deterministic weighted scale-free small-world network model and find that the W SD grows sublinearly with increasing network order(i.e., the number of nodes) and provides a sensitive discrimination for each input of this model. This study demonstrates that the scaling feature of the W SD exists in the weighted network model which has high and order-independent clustering coefficients and reasonable power-law exponents. 展开更多
关键词 weighted spectral distribution weighted small-world network scaling
在线阅读 下载PDF
YOLO-Banana:An Effective Grading Method for Banana Appearance Quality
2
作者 Dianhui Mao Xuesen Wang +3 位作者 Yiming Liu Denghui Zhang Jianwei Wu Junhua Chen 《Journal of Beijing Institute of Technology》 EI CAS 2023年第3期363-373,共11页
The increasing trend towards independent fruit packaging demands a high appearance quality of individually packed fruits.In this paper,we propose an improved YOLOv5-based model,YOLO-Banana,to effectively grade banana ... The increasing trend towards independent fruit packaging demands a high appearance quality of individually packed fruits.In this paper,we propose an improved YOLOv5-based model,YOLO-Banana,to effectively grade banana appearance quality based on the number of banana defect points.Due to the minor and dense defects on the surface of bananas,existing detection algorithms have poor detection results and high missing rates.To address this,we propose a densitybased spatial clustering of applications with noise(DBSCAN)and K-means fusion clustering method that utilizes refined anchor points to obtain better initial anchor values,thereby enhancing the network’s recognition accuracy.Moreover,the optimized progressive aggregated network(PANet)enables better multi-level feature fusion.Additionally,the non-maximum suppression function is replaced with a weighted non-maximum suppression(weighted NMS)function based on distance intersection over union(DIoU).Experimental results show that the model’s accuracy is improved by 2.3%compared to the original YOLOv5 network model,thereby effectively grading the banana appearance quality. 展开更多
关键词 YOLOv5 banana appearance grading clustering algorithm weighted non-maximum suppression(weighted NMS) progressive aggregated network(PANet)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部