目前,配电网运维检修成本结构模糊、管理相对粗放,易造成地区配置失衡,设备资产运维检修的薄弱环节无法得到合理加强。为此,提出了一种基于贝叶斯平均模型(Bayes model averaging,BMA)-改进灰色关联法的配电网设备资产运检成本影响因素...目前,配电网运维检修成本结构模糊、管理相对粗放,易造成地区配置失衡,设备资产运维检修的薄弱环节无法得到合理加强。为此,提出了一种基于贝叶斯平均模型(Bayes model averaging,BMA)-改进灰色关联法的配电网设备资产运检成本影响因素评价分析方法,从经济因素、设备因素、环境因素和网络结构等方面解析影响运检成本的潜在影响因素,基于BMA方法进行关键变量筛选,并采用改进反熵-灰色关联分析法对影响因素的关联度进行量化分析,找到影响配电网运检成本的薄弱环节。以实际供电区域为例,筛选出影响配电网设备资产运检成本的9项关键因素,得到该供电区域的综合评分和建设薄弱项,并结合区域发展的具体情况,验证了该方法的有效性和合理性。展开更多
Objective speech quality is difficult to be measured without the input reference speech.Mapping methods using data mining are investigated and designed to improve the output-based speech quality assessment algorithm.T...Objective speech quality is difficult to be measured without the input reference speech.Mapping methods using data mining are investigated and designed to improve the output-based speech quality assessment algorithm.The degraded speech is firstly separated into three classes(unvoiced,voiced and silence),and then the consistency measurement between the degraded speech signal and the pre-trained reference model for each class is calculated and mapped to an objective speech quality score using data mining.Fuzzy Gaussian mixture model(GMM)is used to generate the artificial reference model trained on perceptual linear predictive(PLP)features.The mean opinion score(MOS)mapping methods including multivariate non-linear regression(MNLR),fuzzy neural network(FNN)and support vector regression(SVR)are designed and compared with the standard ITU-T P.563 method.Experimental results show that the assessment methods with data mining perform better than ITU-T P.563.Moreover,FNN and SVR are more efficient than MNLR,and FNN performs best with 14.50% increase in the correlation coefficient and 32.76% decrease in the root-mean-square MOS error.展开更多
文摘目前,配电网运维检修成本结构模糊、管理相对粗放,易造成地区配置失衡,设备资产运维检修的薄弱环节无法得到合理加强。为此,提出了一种基于贝叶斯平均模型(Bayes model averaging,BMA)-改进灰色关联法的配电网设备资产运检成本影响因素评价分析方法,从经济因素、设备因素、环境因素和网络结构等方面解析影响运检成本的潜在影响因素,基于BMA方法进行关键变量筛选,并采用改进反熵-灰色关联分析法对影响因素的关联度进行量化分析,找到影响配电网运检成本的薄弱环节。以实际供电区域为例,筛选出影响配电网设备资产运检成本的9项关键因素,得到该供电区域的综合评分和建设薄弱项,并结合区域发展的具体情况,验证了该方法的有效性和合理性。
基金Projects(61001188,1161140319)supported by the National Natural Science Foundation of ChinaProject(2012ZX03001034)supported by the National Science and Technology Major ProjectProject(YETP1202)supported by Beijing Higher Education Young Elite Teacher Project,China
文摘Objective speech quality is difficult to be measured without the input reference speech.Mapping methods using data mining are investigated and designed to improve the output-based speech quality assessment algorithm.The degraded speech is firstly separated into three classes(unvoiced,voiced and silence),and then the consistency measurement between the degraded speech signal and the pre-trained reference model for each class is calculated and mapped to an objective speech quality score using data mining.Fuzzy Gaussian mixture model(GMM)is used to generate the artificial reference model trained on perceptual linear predictive(PLP)features.The mean opinion score(MOS)mapping methods including multivariate non-linear regression(MNLR),fuzzy neural network(FNN)and support vector regression(SVR)are designed and compared with the standard ITU-T P.563 method.Experimental results show that the assessment methods with data mining perform better than ITU-T P.563.Moreover,FNN and SVR are more efficient than MNLR,and FNN performs best with 14.50% increase in the correlation coefficient and 32.76% decrease in the root-mean-square MOS error.