A new kind of combining forecasting model based on the generalized weighted functional proportional mean is proposed and the parameter estimation method of its weighting coefficients by means of the algorithm of quadr...A new kind of combining forecasting model based on the generalized weighted functional proportional mean is proposed and the parameter estimation method of its weighting coefficients by means of the algorithm of quadratic programming is given. This model has extensive representation. It is a new kind of aggregative method of group forecasting. By taking the suitable combining form of the forecasting models and seeking the optimal parameter, the optimal combining form can be obtained and the forecasting accuracy can be improved. The effectiveness of this model is demonstrated by an example.展开更多
提出了一种基于改进三次相位函数的多分量线性调频(linear frequency modulation,LFM)信号参数估计算法。该算法只需要通过二阶非线性变换在信号参数空间形成最大值来估计LFM信号参数。在多分量的情况下,讨论了信号自项和交叉项与时间...提出了一种基于改进三次相位函数的多分量线性调频(linear frequency modulation,LFM)信号参数估计算法。该算法只需要通过二阶非线性变换在信号参数空间形成最大值来估计LFM信号参数。在多分量的情况下,讨论了信号自项和交叉项与时间的关系,发现自项和交叉项对时间有不同的依赖性。为了克服交叉项的影响,提出了加权平均的方法来改进算法。然后推导了三次相位函数的FFT快速算法,并进一步采用了舍入最近采样点的方法改进算法,使其可以应用于实际的离散采样系统。仿真试验表明,此方法在低信噪比下估计多分量LFM信号参数效果显著,其快速算法在大大降低运算量的同时,与原算法相比较,仍然保持了良好的估计性能。展开更多
文摘A new kind of combining forecasting model based on the generalized weighted functional proportional mean is proposed and the parameter estimation method of its weighting coefficients by means of the algorithm of quadratic programming is given. This model has extensive representation. It is a new kind of aggregative method of group forecasting. By taking the suitable combining form of the forecasting models and seeking the optimal parameter, the optimal combining form can be obtained and the forecasting accuracy can be improved. The effectiveness of this model is demonstrated by an example.
文摘提出了一种基于改进三次相位函数的多分量线性调频(linear frequency modulation,LFM)信号参数估计算法。该算法只需要通过二阶非线性变换在信号参数空间形成最大值来估计LFM信号参数。在多分量的情况下,讨论了信号自项和交叉项与时间的关系,发现自项和交叉项对时间有不同的依赖性。为了克服交叉项的影响,提出了加权平均的方法来改进算法。然后推导了三次相位函数的FFT快速算法,并进一步采用了舍入最近采样点的方法改进算法,使其可以应用于实际的离散采样系统。仿真试验表明,此方法在低信噪比下估计多分量LFM信号参数效果显著,其快速算法在大大降低运算量的同时,与原算法相比较,仍然保持了良好的估计性能。