期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
DTWAWKNN驱动的蓝牙/WiFi指纹定位方法
1
作者 杨明 纪冬华 《导航定位学报》 北大核心 2025年第3期189-197,共9页
针对蓝牙/无线保真(WiFi)指纹定位效果差、算法复杂度高等问题,提出一种动态时间规整辅助加权K近邻(DTWAWKNN)驱动的蓝牙/WiFi指纹定位方法:离线阶段,通过动态时间规整(DTW)算法计算不等维度的蓝牙、WiFi和蓝牙/WiFi混合指纹之间的相似... 针对蓝牙/无线保真(WiFi)指纹定位效果差、算法复杂度高等问题,提出一种动态时间规整辅助加权K近邻(DTWAWKNN)驱动的蓝牙/WiFi指纹定位方法:离线阶段,通过动态时间规整(DTW)算法计算不等维度的蓝牙、WiFi和蓝牙/WiFi混合指纹之间的相似度,并基于加权K近邻(WKNN)实现匹配定位,然后以蓝牙、WiFi及蓝牙/WiFi混合指纹库与蓝牙、WiFi及蓝牙/WiFi混合指纹的匹配结果为定位特征,构建基于多类型指纹匹配定位结果的离线定位指纹库;在线阶段,基于DTWAWKNN实现蓝牙、WiFi和蓝牙/WiFi混合指纹之间的匹配定位,获取基于多类型指纹匹配定位结果的在线定位指纹,再基于WKNN算法实现离线定位指纹库和在线定位指纹的匹配定位。实验结果表明,提出方法的定位效果远优于WKNN、随机森林(RF)和支持向量机(SVM),定位精度可至少提高67.74%,定位稳定性最少提高54.51%,算法复杂度至少降低77.9%。 展开更多
关键词 蓝牙 无线保真(WiFi) 指纹定位 动态时间规整(DTW) 加权K近邻(wknn)
在线阅读 下载PDF
数字电视广播信号多径指纹匹配定位方法
2
作者 黄奕博 陈新 李家辉 《导航定位学报》 北大核心 2025年第4期146-155,共10页
针对全球卫星导航系统(GNSS)信号无法覆盖或受到严重干扰的情况下,采用机会信号SOP定位多基于几何测距原理,易受非视距(NLOS)和多径效应影响,城市环境下定位精度有限等问题,提出一种数字电视广播信号多径指纹匹配定位方法:基于指纹匹配... 针对全球卫星导航系统(GNSS)信号无法覆盖或受到严重干扰的情况下,采用机会信号SOP定位多基于几何测距原理,易受非视距(NLOS)和多径效应影响,城市环境下定位精度有限等问题,提出一种数字电视广播信号多径指纹匹配定位方法:基于指纹匹配原理,机会信号(SOP)定位有着不依赖于视距(LOS)环境的特点,充分利用NLOS和多径效应提高定位精度,并结合数字电视(DTV)信号具有信号源稳定、发射功率高、覆盖范围广等优点,提出基于中国数字地面多媒体广播(DTMB)信号的多径指纹特征定位方法;然后介绍DTMB信号采集、多径特征提取、指纹稳定化处理、指纹数据库建立和在线定位算法等流程。实验结果表明,利用提出的多径指纹特征结合加权K近邻(WKNN)定位算法可实现接近10 m的平均定位精度,远优于传统基于测距或能量强度指纹的DTV信号定位方法。 展开更多
关键词 指纹匹配 数字地面多媒体广播(DTMB)信号 多径特征 稳定化处理 加权K近邻(wknn)算法
在线阅读 下载PDF
基于归一化RSS和约束WKNN的WiFi指纹定位算法 被引量:6
3
作者 冯涛 阮超 +2 位作者 郭凯旋 卢彦霖 余敏 《传感器与微系统》 CSCD 2018年第10期127-129,共3页
针对基于加权K最近邻(WKNN)的WiFi指纹定位算法精度低的问题,提出了基于归一化接收信号强度(RSS)和约束WKNN的WiFi指纹定位算法。采用高斯滤波对离线阶段和在线阶段采集的RSS值去噪,降低信号的随机误差,并建立位置指纹库(radio map);采... 针对基于加权K最近邻(WKNN)的WiFi指纹定位算法精度低的问题,提出了基于归一化接收信号强度(RSS)和约束WKNN的WiFi指纹定位算法。采用高斯滤波对离线阶段和在线阶段采集的RSS值去噪,降低信号的随机误差,并建立位置指纹库(radio map);采用基于4—域系统的WKNN算法匹配定位,防止离待测点较远的参考点参与匹配造成的误差。实验结果表明:改进后的WiFi指纹定位算法可以更好地估计用户的实际位置,平均定位误差降低了19.4%。 展开更多
关键词 归一化 高斯滤波 加权K最近邻 4—域系统 WiFi指纹
在线阅读 下载PDF
基于加权的K近邻线性混合显著性目标检测 被引量:5
4
作者 李炜 李全龙 刘政怡 《电子与信息学报》 EI CSCD 北大核心 2019年第10期2442-2449,共8页
显著性目标检测旨在于一个场景中自动检测能够引起人类注意的目标或区域,在自底向上的方法中,基于多核支持向量机(SVM)的集成学习取得了卓越的效果。然而,针对每一张要处理的图像,该方法都要重新训练,每一次训练都非常耗时。因此,该文... 显著性目标检测旨在于一个场景中自动检测能够引起人类注意的目标或区域,在自底向上的方法中,基于多核支持向量机(SVM)的集成学习取得了卓越的效果。然而,针对每一张要处理的图像,该方法都要重新训练,每一次训练都非常耗时。因此,该文提出一个基于加权的K近邻线性混合(WKNNLB)显著性目标检测方法:利用现有的方法来产生初始的弱显著图并获得训练样本,引入加权的K近邻(WKNN)模型来预测样本的显著性值,该模型不需要任何训练过程,仅需选择一个最优的K值和计算与测试样本最近的K个训练样本的欧式距离。为了减少选择K值带来的影响,多个加权的K近邻模型通过线性混合的方式融合来产生强的显著图。最后,将多尺度的弱显著图和强显著图融合来进一步提高检测效果。在常用的ASD和复杂的DUT-OMRON数据集上的实验结果表明了该算法在运行时间和性能上的有效性和优越性。当采用较好的弱显著图时,该算法能够取得更好的效果。 展开更多
关键词 显著性目标检测 集成学习 线性混合 加权的K近邻
在线阅读 下载PDF
基于加权K-近邻分类的非视距识别方法研究 被引量:5
5
作者 韦子辉 解云龙 +3 位作者 王世昭 叶兴跃 张要发 方立德 《电子与信息学报》 EI CSCD 北大核心 2022年第8期2842-2851,共10页
超宽带(UWB)定位系统中,针对复杂的环境下,信号的遮挡、直达信号的错误判断严重影响定位精度问题,该文基于信道冲激响应(CIR)提出一种新型特征参量——饱和度(S),结合前人提出的特征参量利用Relief算法和互信息特征选择(MIFS)算法进行... 超宽带(UWB)定位系统中,针对复杂的环境下,信号的遮挡、直达信号的错误判断严重影响定位精度问题,该文基于信道冲激响应(CIR)提出一种新型特征参量——饱和度(S),结合前人提出的特征参量利用Relief算法和互信息特征选择(MIFS)算法进行特征选择,在相关性的基础上赋予特征相应的权重,选择最优的特征子集进行加权K-近邻(WKNN)分类,提高了非视距(NLOS)识别系统准确度。并且分析了WKNN算法中的训练数据集数量与近邻数K对算法的影响,确定优选方案,减小了算法计算量,提高了NLOS识别系统实时性。在不同环境下进行实验验证,结果表明,该方法具备较高的识别准确度和环境适用性,识别精度达到95%。 展开更多
关键词 超宽带定位 信道冲击响应 非视距识别 特征选择 加权-K近邻
在线阅读 下载PDF
基于D-S证据理论的室内组合定位算法 被引量:3
6
作者 王续乔 王瑾琨 《计算机应用》 CSCD 北大核心 2017年第4期1198-1201,1211,共5页
在非定位系统部署信标的大体量场区环境下,针对基于位置的服务(LBS)的室内定位需求问题,提出了一种基于D-S证据推理理论的无线局域网/惯性测量组件(WiFi/IMU)组合定位算法。该算法首先建立各接入点(AP)单点的信号强度传输模型,并利用卡... 在非定位系统部署信标的大体量场区环境下,针对基于位置的服务(LBS)的室内定位需求问题,提出了一种基于D-S证据推理理论的无线局域网/惯性测量组件(WiFi/IMU)组合定位算法。该算法首先建立各接入点(AP)单点的信号强度传输模型,并利用卡尔曼滤波对接收到的信号强度指示(RSSI)值进行去噪修正处理;然后通过D-S证据理论对实时采集的WiFi信号强度、偏航角、各轴加速度的多源信息进行融合处理,选取可信度高的指纹区块;最后通过加权K近邻(WKNN)算法得到终端估算位置。单元场区仿真实验结果显示,最大误差2.36 m,综合平均误差1.27m,验证了该算法的可行性与有效性;且误差累计概率分布在小于等于典型距离时为88.20%,优于惩罚参数C支持向量回归机(C-SVR)的70.82%和行人航迹推算(PDR)算法的67.85%。进一步地,算法在全场区实际实验中也表现出了良好的环境适用性。 展开更多
关键词 无线局域网 室内定位 接收信号强度指示 位置指纹 D-S证据理论 加权K近邻
在线阅读 下载PDF
基于聚类优选自适应KNN的改进定位算法 被引量:14
7
作者 商磊 关维国 龚瑞雪 《传感器与微系统》 CSCD 北大核心 2023年第3期136-139,共4页
针对室内复杂环境下,WiFi定位算法选取固定K近邻(KNN)会导致定位精度变差的问题,提出基于MeanShift聚类选取自适应KNN的混合相似度加权KNN(MWKNN)定位算法,并基于几何位置对自适应KNN进行动态优选。通过MeanShift聚类和几何位置动态优... 针对室内复杂环境下,WiFi定位算法选取固定K近邻(KNN)会导致定位精度变差的问题,提出基于MeanShift聚类选取自适应KNN的混合相似度加权KNN(MWKNN)定位算法,并基于几何位置对自适应KNN进行动态优选。通过MeanShift聚类和几何位置动态优选自适应KNN进行加权KNN(WKNN)算法定位估计,削弱了含有较大误差的近邻点参与定位的影响,显著提高了算法的定位精度。实验结果表明:在3 m网格及3 dBm噪声标准差条件下,改进MWKNN定位算法的均方根误差为0.92 m,平均定位误差小于0.74 m;2 m精度下的概率达到96%。定位精度明显优于传统KNN和WKNN算法,同时提升了定位结果的稳定性。 展开更多
关键词 室内定位 MeanShift聚类 几何位置优选 自适应K近邻 加权K近邻定位
在线阅读 下载PDF
一种改进的WIFI位置指纹室内定位算法 被引量:8
8
作者 谢世成 余学祥 +2 位作者 赵佳星 汪涛 童子良 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2021年第6期753-757,共5页
WIFI位置指纹定位作为目前常见的室内定位方法,存在接收信号强度(received signal strength,RSS)波动和时变等问题,导致定位精度不高。文章为此设计了一种采用结合卡尔曼滤波的方差修正加权K最近邻(weighted K-nearest neighbor,WKNN)... WIFI位置指纹定位作为目前常见的室内定位方法,存在接收信号强度(received signal strength,RSS)波动和时变等问题,导致定位精度不高。文章为此设计了一种采用结合卡尔曼滤波的方差修正加权K最近邻(weighted K-nearest neighbor,WKNN)算法的室内定位方法。离线阶段,经过卡尔曼滤波后,选择数据的方差和均值作为反映RSS变化的特征值;在线阶段,通过采集的信号均值计算近似方差,对欧式距离进行权重修正,最后选择K个最近邻点确定待定点位置。实验结果表明:该文采用的定位方法平均定位精度达到1.248 m,相比于传统的WKNN室内定位方法,平均定位精度提升了20.3%;对比K-均值聚类结合动态加权K最近邻算法(K-means-EWKNN),平均定位精度提升了8.9%。 展开更多
关键词 室内定位 位置指纹 wknn算法 卡尔曼滤波
在线阅读 下载PDF
基于RSSI概率统计分布的室内定位方法 被引量:9
9
作者 李石荣 李飞腾 《计算机工程与应用》 CSCD 北大核心 2016年第11期119-124,130,共7页
针对接收信号强度指示(Received Signal Strength Indication,RSSI)时变现象影响WLAN室内定位精度问题进行了研究,提出了一种基于RSSI概率统计分布(Statistical Probability Distribution,SPD)的加权K最近邻(Weighted K-Nearest Neighbo... 针对接收信号强度指示(Received Signal Strength Indication,RSSI)时变现象影响WLAN室内定位精度问题进行了研究,提出了一种基于RSSI概率统计分布(Statistical Probability Distribution,SPD)的加权K最近邻(Weighted K-Nearest Neighbor,WKNN)方法——SPD-WKNN方法。该方法首先利用SPD方法得到指纹点RSSI向量区间;然后运用SVM算法选取测试点K个近邻指纹点,计算测试点RSSI向量到每个近邻指纹点的最小欧氏距离;最后结合WKNN算法获取定位结果。实验结果表明,SPD-WKNN方法与NN、KNN、WKNN、SVR和LSSVM方法相比定位误差分别降低了47.3%、41.6%、31.9%、27.1%和16.3%,呈现了良好的定位效果;利用SVM算法的稀疏性明显减小了运算时间。 展开更多
关键词 接收信号强度指示(RSSI) 室内定位 概率统计分布 加权K最近邻(wknn) 支持向量机(SVM)
在线阅读 下载PDF
一种改进的组合定权的指纹定位算法 被引量:10
10
作者 曹晓祥 陈国良 《测绘通报》 CSCD 北大核心 2018年第2期6-10,共5页
室内场景复杂、WiFi信号不稳定等因素,造成基于信号空间K最近邻法的WiFi指纹定位算法匹配的邻近点会出现偏差,使用偏差较大的点计算待定点位置会直接影响定位结果。本文提出了一种改进的组合定权的指纹定位算法,对K个邻近点的几何结构... 室内场景复杂、WiFi信号不稳定等因素,造成基于信号空间K最近邻法的WiFi指纹定位算法匹配的邻近点会出现偏差,使用偏差较大的点计算待定点位置会直接影响定位结果。本文提出了一种改进的组合定权的指纹定位算法,对K个邻近点的几何结构进行分析,剔除其中偏离邻近点几何中心较远的点后,同时分析匹配邻近点中心同待定点几何位置存在理论上的关联,利用选择后的邻近点与其中心点的几何距离、待定点与指纹点欧氏距离组合定权,加权求取坐标。与KNN、WKNN算法定位结果分别进行比较,表明该方法提高了定位准确性和精度。 展开更多
关键词 室内定位 WiFi指纹 wknn 邻近点几何结构 邻近点选择 组合定权
在线阅读 下载PDF
基于测量报告信号聚类的指纹定位方法 被引量:1
11
作者 张海永 方贤进 +3 位作者 张恩皖 李宝玉 彭超 穆健翔 《计算机应用》 CSCD 北大核心 2023年第12期3947-3954,共8页
针对基于加权K最近邻(WKNN)和机器学习算法的指纹库定位方法存在精度和定位效率较低的问题,提出一种基于测量报告(MR)信号聚类的指纹定位方法。首先,把MR信号分为室内、道路和室外这3种属性;其次,利用地理信息系统(GIS)信息将栅格分为... 针对基于加权K最近邻(WKNN)和机器学习算法的指纹库定位方法存在精度和定位效率较低的问题,提出一种基于测量报告(MR)信号聚类的指纹定位方法。首先,把MR信号分为室内、道路和室外这3种属性;其次,利用地理信息系统(GIS)信息将栅格分为建筑物、道路和室外子区域,并将不同属性的MR数据落入对应的属性子区域;最后,借助K均值(K-Means)聚类算法对栅格内的MR信号进行聚类分析,以创建子区域下的虚拟子区域,并采用WKNN算法对MR测试样本进行匹配。此外,利用欧氏距离计算平均定位精度,并通过生产环境的一些MR数据测试了所提方法的定位性能。实验结果表明,所提方法的50 m定位误差占比为71.21%,相较于WKNN算法提升了2.64个百分点;平均定位定位误差为44.73 m,相较于WKNN算法降低了7.60 m。所提方法具备良好的定位精度和效率,可满足生产环境中MR数据的定位需求。 展开更多
关键词 测量报告 定位 信号聚类 加权K最近邻算法 欧氏距离
在线阅读 下载PDF
基于经验模态分解的室内指纹定位算法 被引量:1
12
作者 刘云龙 孟凤莹 周蓉 《计算机应用》 CSCD 北大核心 2022年第S01期247-251,共5页
WiFi信号的波动问题是影响指纹定位精度的主要因素之一,针对该问题设计了基于经验模态分解(EMD)的室内指纹定位算法,利用EMD方法在保持信号原有特征的同时实现了平滑噪声的目的。同时,针对传统的加权K最邻近(WKNN)算法在参考点数量大、... WiFi信号的波动问题是影响指纹定位精度的主要因素之一,针对该问题设计了基于经验模态分解(EMD)的室内指纹定位算法,利用EMD方法在保持信号原有特征的同时实现了平滑噪声的目的。同时,针对传统的加权K最邻近(WKNN)算法在参考点数量大、指纹特征维度高时存在的计算量大、定位实时性低的问题,采用Ball Tree的近邻检索方法优化指纹匹配阶段的数据查询结构,提高了指纹匹配的速度。实验结果表明:相较于常用的传统WiFi指纹定位算法,所提基于经验模态分解的室内指纹定位算法可获得17%以上定位误差的改善,同时指纹匹配耗时减少了45%左右,有效提高了定位的精度与实时性。 展开更多
关键词 室内指纹定位 信号波动 经验模态分解 Ball-Tree算法 加权K最邻近算法
在线阅读 下载PDF
基于区域划分的局部更新指纹定位算法 被引量:4
13
作者 杨斌 李灯熬 赵菊敏 《计算机工程与应用》 CSCD 北大核心 2018年第17期56-61,共6页
针对室内定位指纹数据库更新成本过高的问题,设计了一种通过区域划分进行局部更新指纹数据库的RFID(Radio Frequency Identification,射频识别技术)室内定位算法。该算法通过聚类算法将指纹地图分成若干个子区域,每个子区域选取一个代... 针对室内定位指纹数据库更新成本过高的问题,设计了一种通过区域划分进行局部更新指纹数据库的RFID(Radio Frequency Identification,射频识别技术)室内定位算法。该算法通过聚类算法将指纹地图分成若干个子区域,每个子区域选取一个代表点代表该子区域的指纹有效性,通过检测代表点的有效性来选择加权k近邻算法(Weighted k-Nearest Neighbor,WkNN)定位或子区域数据库的局部更新。实验结果表明,该算法在低成本的条件下极大限度地提高了定位精度和长期定位稳定性。 展开更多
关键词 室内定位 指纹数据库 射频识别技术(RFID) 聚类算法 加权k近邻算法(wknn)
在线阅读 下载PDF
一种基于大规模MIMO系统的三维空间指纹定位方法
14
作者 贺晨琳 王霄峻 汪磊 《电讯技术》 北大核心 2023年第12期1876-1884,共9页
针对现有指纹定位技术存在指纹数据量较大、存储与处理困难、复杂空间定位适应性不足等问题,提出了一种基于大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)系统的三维室内空间指纹定位方法。首先,提出一种处理速度更快、存... 针对现有指纹定位技术存在指纹数据量较大、存储与处理困难、复杂空间定位适应性不足等问题,提出了一种基于大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)系统的三维室内空间指纹定位方法。首先,提出一种处理速度更快、存储需求更小的角度-时延信道频率功率(Angle Delay Channel Frequency Power,ADCFP)指纹矩阵;其次,引入新的相似度准则即卡方距离以提高定位精度;然后提出一种改进的次方加权K近邻(Weighted K-Nearest Neighbor,WKNN)匹配算法,根据不同次方值对权重下降速度的影响差异,针对指纹相似度的大小分配以不同的权重;最后,对ADCFP指纹采用按行按列压缩的存储方法得到三种压缩指纹,进一步减少指纹数据量,并引入中心到达角(Central Angle of Arrival,CAOA)聚类算法缩短定位时长。仿真结果表明,ADCFP指纹矩阵2 m精度可靠性可达89.2%,采用卡方距离相较于曼哈顿距离的平均定位误差降低了5.63%,改进次方WKNN算法相较于传统WKNN算法平均定位误差降低了4.45%,引入CAOA聚类算法可使定位速度提升为未聚类情况下的1.72倍,平均定位误差较K均值聚类算法降低了44.05%,定位性能有较大提升。 展开更多
关键词 三维室内空间 指纹定位 大规模MIMO 加权K近邻(wknn) 中心到达角(CAOA)聚类
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部