期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于YOLOv5s室内目标检测轻量化改进算法研究 被引量:12
1
作者 牛鑫宇 毛鹏军 +1 位作者 段云涛 娄晓恒 《计算机工程与应用》 CSCD 北大核心 2024年第3期109-118,共10页
针对现有室内目标检测算法,存在结构复杂,计算量以及模型参数量过大等问题,难以部署到计算能力有限的室内机器人平台,实现高效的目标检测。为解决这一问题,提出了一种改进的YOLOV5s轻量化检测算法。该方法采用ShuffleNetv2作为主干特征... 针对现有室内目标检测算法,存在结构复杂,计算量以及模型参数量过大等问题,难以部署到计算能力有限的室内机器人平台,实现高效的目标检测。为解决这一问题,提出了一种改进的YOLOV5s轻量化检测算法。该方法采用ShuffleNetv2作为主干特征提取网络,并且在改进的主干网络基础上采用CA注意力机制,同时在颈部网络中采用GSConv和VOV-GSCSP模块。最后引入边框回归损失函数EIOU加快网络收敛。研究结果表明,改进后的目标检测算法,模型计算量减少了68.75%,模型参数量减少了62.2%,权重文件减少了59.7%,平均精确率mAP均值为0.653,改进后的目标检测模型能够在保证轻量化的同时保证检测精度。 展开更多
关键词 YOLOv5s 轻量化 ShuffleNetv2网络 CA注意力机制 GSConv模块 VOV-GSCSP模块 EIOU损失函数
在线阅读 下载PDF
基于改进U-Net的不同容重小麦籽粒识别检测 被引量:2
2
作者 吕宗旺 王玉琦 孙福艳 《河南农业科学》 北大核心 2023年第10期141-152,共12页
小麦质量等级检测过程中,容重是一项非常重要的指标。人工检测和传统图像处理方法在小麦质量等级检测方面存在设备昂贵、识别效率低等问题,需要进一步改进。采用自制3种等级小麦籽粒样品作为小麦容重数据集,针对小麦籽粒目标小、边缘分... 小麦质量等级检测过程中,容重是一项非常重要的指标。人工检测和传统图像处理方法在小麦质量等级检测方面存在设备昂贵、识别效率低等问题,需要进一步改进。采用自制3种等级小麦籽粒样品作为小麦容重数据集,针对小麦籽粒目标小、边缘分割不清晰等特点对U-Net网络进行改进。在主干网络上,采用残差堆叠模块来减少特征损失,在网络桥接部分嵌入CBAM注意力机制模块来加强对特征的进一步提取,在解码器部分嵌入自注意力机制模块,还原细节信息。结果表明,改进网络模型CBSA_U-Net的平均交并比(MIoU)为81.5%,比U-Net模型提升了1.8百分点,相较于PSPNet、DeepLabv3+模型分别提升了4.2、3.3百分点。 展开更多
关键词 小麦 质量等级 籽粒识别 容重 残差模块 注意力机制 U-Net模型 分割
在线阅读 下载PDF
基于Deeplab V3 Plus的自适应注意力机制图像分割算法 被引量:14
3
作者 杨贞 彭小宝 +1 位作者 朱强强 殷志坚 《计算机应用》 CSCD 北大核心 2022年第1期230-238,共9页
针对Deeplab V3 Plus在下采样操作中图像细节信息和小目标信息过早丢失的问题,提出了一种基于Deeplab V3 Plus网络架构的自适应注意力机制图像语义分割算法。首先,在Deeplab V3 Plus主干网络的输入层、中间层和输出层均嵌入注意力机制模... 针对Deeplab V3 Plus在下采样操作中图像细节信息和小目标信息过早丢失的问题,提出了一种基于Deeplab V3 Plus网络架构的自适应注意力机制图像语义分割算法。首先,在Deeplab V3 Plus主干网络的输入层、中间层和输出层均嵌入注意力机制模块,并且引入一个权重值与每个注意力机制模块相乘,以达到约束注意力机制模块的目的;其次,在PASCAL VOC2012公共分割数据集上训练嵌入注意力模块的Deeplab V3 Plus,以此手动获取注意力机制模块权重值(经验值);然后,探索输入层、中间层和输出层中注意力机制模块的多种融合方式;最后,将注意力机制模块的权重值更改为反向传播自动更新,从而得到注意力机制模块的最优权值和最优分割模型。实验结果表明,与原始Deeplab V3 Plus网络结构相比,引入自适应注意力机制的Deeplab V3 Plus网络结构在PASCAL VOC2012公共分割据集和植物虫害数据集上的平均交并比(MIOU)分别提高了1.4个百分点和0.7个百分点。 展开更多
关键词 语义分割 下采样操作 自适应注意力机制 注意力机制模块权重值 DeeplabV3 Plus
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部