期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Development of New Capabilities Using Machine Learning for Space Weather Prediction
1
作者 LIU Siqing CHEN Yanhong +7 位作者 LUO Bingxian CUI Yanmei ZHONG Qiuzhen WANG Jingjing YUAN Tianjiao HU Qinghua HUANG Xin CHEN Hong 《空间科学学报》 CAS CSCD 北大核心 2020年第5期875-883,共9页
With the development of space exploration and space environment measurements,the numerous observations of solar,solar wind,and near Earth space environment have been obtained in last 20 years.The accumulation of multi... With the development of space exploration and space environment measurements,the numerous observations of solar,solar wind,and near Earth space environment have been obtained in last 20 years.The accumulation of multiple data makes it possible to better use machine learning technique,which has achieved unforeseen results in industrial applications in last decades,for developing new approaches and models in space weather investigation and prediction.In this paper,the efforts on the forecasting methods for space weather indices,events,and parameters using machine learning are briefly introduced based on the study works in recent years.These investigations indicate that machine learning,especially deep learning technique can be used in automatic characteristic identification,solar eruption prediction,space weather forecasting for solar and geomagnetic indices,and modeling of space environment parameters. 展开更多
关键词 Space weather forecasting Machine learning Deep learning
在线阅读 下载PDF
A Study on Reconstruction of Surface Wind Speed in China Due to Various Climate Variabilities
2
作者 Li Yancong Li Xichen +1 位作者 Sun Yankun Xu Jinhua 《Journal of Northeast Agricultural University(English Edition)》 CAS 2024年第2期53-65,共13页
Using European Centre for Medium-Range Weather Forecasts Reanalysis V5(ERA5)reanalysis data,this study investigated the reconstruction effects of various climate variabilities on surface wind speed in China from 1979 ... Using European Centre for Medium-Range Weather Forecasts Reanalysis V5(ERA5)reanalysis data,this study investigated the reconstruction effects of various climate variabilities on surface wind speed in China from 1979 to 2022.The results indicated that the reconstructed annual mean wind speed and the standard deviation of the annual mean wind speed,utilizing various climate variability indices,exhibited similar spatial modes to the reanalysis data,with spatial correlation coefficients of 0.99 and 0.94,respectively.In the reconstruction of six major wind power installed capacity provinces/autonomous regions in China,the effects were notably good for Hebei and Shanxi provinces,with the correlation coefficients for the interannual regional average wind speed time series being 0.65 and 0.64,respectively.The reconstruction effects of surface wind speed differed across seasons,with spring and summer reconstructions showing the highest correlation with reanalysis data.The correlation coefficients for all seasons across most regions in China ranged between 0.4 and 0.8.Among the reconstructed seasonal wind speeds for the six provinces/autonomous regions,Shanxi Province in spring exhibited the highest correlation with the reanalysis,with a coefficient of 0.61.The large-scale climate variability indices showed good reconstruction effects on the annual mean wind speed in China,and could explain the interannual variability trends of surface wind speed in most regions of China,particularly in the main wind energy provinces/autonomous regions. 展开更多
关键词 wind speed wind energy correlation method climate variability European Centre for Medium-Range weather forecasts Reanalysis V5(ERA5)
在线阅读 下载PDF
Artificial Intelligence Based Meteorological Parameter Forecasting for Optimizing Response of Nuclear Emergency Decision Support System
3
作者 BILAL Ahmed Khan HASEEB ur Rehman +5 位作者 QAISAR Nadeem MUHAMMAD Ahmad Naveed Qureshi JAWARIA Ahad MUHAMMAD Naveed Akhtar AMJAD Farooq MASROOR Ahmad 《原子能科学技术》 EI CAS CSCD 北大核心 2024年第10期2068-2076,共9页
This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weat... This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weather research and forecasting (WRF) model.Accurate meteorological data is indispensable for simulating the release of radioactive effluents,especially in dispersion modeling for nuclear emergency decision support systems.Simulation of meteorological conditions during nuclear emergencies using the conventional WRF model is very complex and time-consuming.Therefore,a new artificial neural network (ANN) based technique was proposed as a viable alternative for meteorological prediction.A multi-input multi-output neural network was trained using historical site-specific meteorological data to forecast the meteorological parameters.Comprehensive evaluation of this technique was conducted to test its performance in forecasting various parameters including atmospheric pressure,temperature,and wind speed components in both East-West and North-South directions.The performance of developed network was evaluated on an unknown dataset,and acquired results are within the acceptable range for all meteorological parameters.Results show that ANNs possess the capability to forecast meteorological parameters,such as temperature and pressure,at multiple spatial locations within a grid with high accuracy,utilizing input data from a single station.However,accuracy is slightly compromised when predicting wind speed components.Root mean square error (RMSE) was utilized to report the accuracy of predicted results,with values of 1.453℃for temperature,77 Pa for predicted pressure,1.058 m/s for the wind speed of U-component and 0.959 m/s for the wind speed of V-component.In conclusion,this approach offers a precise,efficient,and wellinformed method for administrative decision-making during nuclear emergencies. 展开更多
关键词 prediction of meteorological parameters weather research and forecasting model artificial neural networks nuclear emergency support system
在线阅读 下载PDF
城市化对北京单次极端高温过程影响的数值模拟研究 被引量:6
4
作者 张雷 任国玉 +5 位作者 苗世光 张爱英 孟凡超 朱士超 任玉玉 索南看卓 《大气科学》 CSCD 北大核心 2020年第5期1093-1108,共16页
城市化对高温热浪的频次和强度具有重要影响,但目前对于城市化影响高温热浪过程的机理了解还不充分。本文利用WRF模式,对2010年7月2~6日(北京时)北京一次高温过程进行了模拟,分析了城市化对此次高温过程的影响机理。采用优化后的WRF模式... 城市化对高温热浪的频次和强度具有重要影响,但目前对于城市化影响高温热浪过程的机理了解还不充分。本文利用WRF模式,对2010年7月2~6日(北京时)北京一次高温过程进行了模拟,分析了城市化对此次高温过程的影响机理。采用优化后的WRF模式,能够模拟出北京连续5日高温的特征和城市热岛强度的变化。城市下垫面的不透水性决定了城区2 m高度处相对湿度低于乡村,削弱了城区通过潜热调节城市气温的能力。日落后,城市感热通量下降缓慢,城区降温速率小于乡村,夜间边界层稳定、高度低,风速小,抑制了城乡之间能量的传输,形成了夜间强的城市热岛强度,造成夜间城市气温明显高于乡村。日出后城乡地面感热通量、潜热通量迅速上升,边界层稳定性下降。午后,城市下垫面分别为地表感热通量和潜热通量的高、低值中心,通过潜热调节气温的能力被削弱;边界层稳定性降低,有利于能量的垂直扩散;此时,城市热岛强度小于夜间。因此,北京城市下垫面形成了明显的城市热岛效应,加重了城区极端高温事件的强度。此外,在这次高温热浪期间,中国东部大部分地区受到大陆暖高压控制,晴空少云,西北气流越山后形成焚风效应,是北京地区高温热浪形成的天气背景。 展开更多
关键词 极端高温 城市热岛 数值模拟 WRF(weather Research and Forecasting) 北京
在线阅读 下载PDF
基于ECMWF数据的中国近海低空波导特征研究 被引量:7
5
作者 成印河 杨欣坤 +1 位作者 张玉生 游志伟 《海洋与湖沼》 CAS CSCD 北大核心 2021年第1期86-96,共11页
基于1988-2017年高分辨率的欧洲中尺度天气预报中心再分析数据,本文对中国近海的低空大气波导进行了统计分析。结果表明:该海域整体大气波导概率为22%,其中悬空波导占60%以上;春季最容易发生大气波导,其次是夏季、秋季和冬季。区域时空... 基于1988-2017年高分辨率的欧洲中尺度天气预报中心再分析数据,本文对中国近海的低空大气波导进行了统计分析。结果表明:该海域整体大气波导概率为22%,其中悬空波导占60%以上;春季最容易发生大气波导,其次是夏季、秋季和冬季。区域时空分布上,中国近海大气波导特征具有明显的月变化和区域分布特征。大气波导发生概率北部海域(渤海、黄海、东海)发展变化较大,南部海域(南海)变化较小;波导底高南方高,北方低,靠近大陆沿岸和岛屿西侧海域低,远海较高,这与主导波导类型密切相关。波导厚度和强度均呈现出明显的半年期震荡:冬、春季节波导厚度具有‘北低南高’,强度‘北弱南强’分布特征,夏、秋季节具有‘北厚南薄’,强度‘北强南弱’分布特征。该结论可以充实我国大气波导数据库建设,为海上雷达探测、通信等提供环境支撑。 展开更多
关键词 中国近海 ECMWF(European Center for Medium Range weather Forecast) 大气波导 统计特征
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部