Equipment selection is an essential work in the research and development planning of equipment.The scientific and rational development of weapons equipment portfolios is of considerable significance to the optimizatio...Equipment selection is an essential work in the research and development planning of equipment.The scientific and rational development of weapons equipment portfolios is of considerable significance to the optimization of equipment architecture design,the adequate resources allocation,and the joint combat performance.From the system view,this paper proposes a method of weapons equipment portfolios selection(WEPS)based on the contribution rate of weapon systems,providing a new idea for weapon equipment portfolio selection.Firstly,we analyze the WEPS problem and the concept of the contribution rate under the systems background.Secondly,we propose a combat network modeling method for weapon equipment systems based on the function chain.Thirdly,we propose a WEPS method based on the contribution rate,fully considering the correlation relationships between potential weapons and the old weapon systems by the combat network model,under the limitation of capability demands and budget resources,with the objective to maximally increasing the combat ability of weapon systems.Finally,we make a case study with a specific WEPS problem where the whole calculation processes and results are analyzed and exhibited to verify the feasibility and effectiveness of the proposed method model.展开更多
The weapons system portfolio selection problem arises at the equipment demonstration stage and deals with the military application requirements.Further,the contribution rate of the system is one of the important indic...The weapons system portfolio selection problem arises at the equipment demonstration stage and deals with the military application requirements.Further,the contribution rate of the system is one of the important indicators to evaluate the role of a system,which can facilitate the weapons system portfolio selection.Therefore,combining the system contribution rate with system portfolio selection is the focus of this study.It also focuses on calculating the contribution rates of multiple equipment systems with various types of capabilities.The contribution rate is measured by establishing a hierarchical multi-criteria value model from three dimensions.Based on the value model,the feasible portfolios are developed under certain cost constraints and the optimal weapons system portfolios are obtained by using the classification optimization selection strategy.Finally,an illustrative example is presented to verify the feasibility of the proposed model.展开更多
In order to maximize the lethality and reversibility of the non-lethal laser weapons(NLLW) at the same time and thus provide a theoretical basis for the R&D of laser weapons in the future,this paper accurately ana...In order to maximize the lethality and reversibility of the non-lethal laser weapons(NLLW) at the same time and thus provide a theoretical basis for the R&D of laser weapons in the future,this paper accurately analyzed the limiting biological dose of irreversible damage to human skin caused by the NLLW.Firstly,based on the burn theory in medicine and the actual tactical background,this paper redefines the evaluation criteria of the limiting laser dose of NLLW to the human body.Secondly,on the basis of anatomical knowledge,a 5-layer finite element model(FEM) of superficial skin is proposed,constructed and verified,which can accurately describe the limiting reversible damage.Based on the optimized Pennes bioheat transfer equation,the diffusion approximation theory,the modified Beer-Lambert law,the Arrhenius equation,and combined with dynamic thermophysical parameters,this paper highly restored the temperature distribution and accurately solved the necrotic tissue distribution inside the human skin irradiated by 1064 nm laser.Finally,it is concluded that the maximum human dose of the1064 nm NLLW is 8.93 J/cm^(2),8.29J/cm^(2),and 8.17 J/cm^(2) when the light spots are 5 mm,10 mm and15 mm,respectively,and the corresponding output power of the weapon is 46.74 W,173.72 W and384.77 W.Simultaneously,the temperature and damage distribution in the tissue at the time of ultimate damage are discussed from the axial and radial dimensions,respectively.The conclusions and analysis methods proposed in this paper are of great guiding significance for future research in military,medical and many other related fields.展开更多
The laser technology has made remarkable progress over the past couple of decades.It is being widely employed in diverse domains,such as holography,space sciences,spectroscopy,medical sciences,micro and power electron...The laser technology has made remarkable progress over the past couple of decades.It is being widely employed in diverse domains,such as holography,space sciences,spectroscopy,medical sciences,micro and power electronics,industrial engineering,and most distinctively,as directed energy military weapons.Owing to their active transmissions,laser systems are similar to microwave radars to some extent;however,unlike conventional radars,the laser operates at very high frequencies thus making it a potent enabler of narrow-beam and high energy aerial deployments,both in offensive and defensive roles.In modern avionics systems,laser target indicators and beam riders are the most common devices that are used to direct the Laser Guided Weapons(LGW)accurately to the ground targets.Additionally,compact size and outstanding angular resolution of laser-based systems motivate their use for drones and unmanned aerial applications.Moreover,the narrow-beam divergence of laser emissions offers a low probability of intercept,making it a suitable contender for secure transmissions and safety-critical operations.Furthermore,the developments in space sciences and laser technology have given synergistic potential outcomes to use laser systems in space operations.This paper comprehensively reviews laser applications and projects for strategic defense actions on the ground or in space.Additionally,a detailed analysis has been done on recent advancements of the laser technology for target indicators and range-finders.It also reviews the advancements in the field of laser communications for surveillance,its earlier state of the art,and ongoing scientific research and advancements in the domain of high energy directed laser weapons that have revolutionized the evolving military battlefield.Besides offering a comprehensive taxonomy,the paper also critically analyzes some of the recent contributions in the associated domains.展开更多
The emergence of laser technology has led to the gradual integration of laser weapon system(LaWS)into military scene,particularly in the field of anti-unmanned aerial vehicle(UAV),showcasing significant potential.Howe...The emergence of laser technology has led to the gradual integration of laser weapon system(LaWS)into military scene,particularly in the field of anti-unmanned aerial vehicle(UAV),showcasing significant potential.However,A current limitation lies in the absence of a comprehensive quantitative approach to assess the capabilities of LaWS.To address this issue,a damage effectiveness characterization model for LaWS is established,taking into account the properties of laser transmission through the atmosphere and the thermal damage effects.By employing this model,key parameters pertaining to the effectiveness of laser damage are determined.The impact of various spatial positions and atmospheric conditions on the damage effectiveness of LaWS have been examined,employing simulation experiments with diverse parameters.The conclusions indicate that the damage effectiveness of LaWS is contingent upon the spatial position of the target,resulting in a diminished effectiveness to damage on distant,low-altitude targets.Additionally,the damage effectiveness of LaWS is heavily reliant on the atmospheric condition,particularly in complex settings such as midday and low visibility conditions,where the damage effectiveness is substantially reduced.This paper provides an accurate and effective calculation method for the rapid decisionmaking of the operators.展开更多
The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilit...The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilities of ATP systems.However,in practical applications,ATP systems face various design constraints and functional limitations,making it infeasible to indefinitely improve hardware performance to meet tracking requirements.As a result,tracking algorithms are required to execute increasingly complex tasks.This study introduces a multi-rate feedforward predictive controller to address issues such as low image feedback frequency and significant delays in ATP systems,which lead to tracking jitter,poor tracking performance,low precision,and target loss.At the same time,the pro-posed approach aims to improve the tracking capabilities of ATP systems for high-speed and highly maneuverable targets under conditions of low sampling feedback rates and high feedback delays.The method suggested is also characterized by its low order,fast response,and robustness to model parameter variations.In this study,an actual ATP system is built for target tracking test,and the proposed algorithm is fully validated in terms of simulation and actual system application verification.Results from both simulations and experiments demonstrate that the method effectively compensates for delays and low sampling rates.For targets with relative angular velocities ranging from 0 to 90°/s and angular accelerations between 0 and 470°/s^(2),the system improved tracking accuracy by 70.0%-89.9%at a sampling frequency of 50 Hz and a delay of 30 m s.Moreover,the compensation algorithm demonstrated consistent performance across actuators with varying characteristics,further confirming its robustness to model insensitivity.In summary,the proposed algorithm considerably enhances the tracking accuracy and capability of ATP systems for high-speed and highly maneuverable targets,reducing the probability of target loss from high speed.This approach offers a practical solution for future multi-target tracking across diverse operational scenarios.展开更多
A projectile system is proposed to improve efficiency and effectiveness of damage done by anti-tank weapon system on its target by designing a ballistic projectile that can split into multiple warheads and engage a ta...A projectile system is proposed to improve efficiency and effectiveness of damage done by anti-tank weapon system on its target by designing a ballistic projectile that can split into multiple warheads and engage a target at the same time. This idea has been developed in interest of saving time consumed from the process of reloading and additional number of rounds wasted on target during an attack. The proposed system is achieved in three steps: Firstly, a mathematical model is prepared using the basic equations of motion. Second, An Ejection Mechanism of proposed warhead is explained with the help of schematics. Third, a part of numerical simulation which is done using the MATLAB software. The final result shows various ranges and times when split can be effectively achieved. With the new system,impact points are increased and hence it has a better probability of hitting a target.展开更多
Cyber operations are relatively a new phenomenon of the last two decades.During that period,they have increased in number,complexity,and agility,while their design and development have been processes well kept under s...Cyber operations are relatively a new phenomenon of the last two decades.During that period,they have increased in number,complexity,and agility,while their design and development have been processes well kept under secrecy.As a consequence,limited data(sets)regarding these incidents are available.Although various academic and practitioner public communities addressed some of the key points and dilemmas that surround cyber operations(such as attack,target identification and selection,and collateral damage),still methodologies and models are needed in order to plan,execute,and assess them in a responsibly and legally compliant way.Based on these facts,it is the aim of this article to propose a model that i))estimates and classifies the effects of cyber operations,and ii)assesses proportionality in order to support targeting decisions in cyber operations.In order to do that,a multi-layered fuzzy model was designed and implemented by analysing real and virtual realistic cyber operations combined with interviews and focus groups with technical e military experts.The proposed model was evaluated on two cyber operations use cases in a focus group with four technical e military experts.Both the design and the results of the evaluation are revealed in this article.展开更多
N,N-dialkylaminoethane-2-sulfonic acids are environmental marker compounds of V type nerve agents,hence analysis of them is very important for verification of the chemical weapons convention(CWC).In this article,liqui...N,N-dialkylaminoethane-2-sulfonic acids are environmental marker compounds of V type nerve agents,hence analysis of them is very important for verification of the chemical weapons convention(CWC).In this article,liquid chromatography-high resolution time of flight mass spectrometry coupled with accurate mass measurement were used to discriminate N,N-disopropyl aminoethane-2-sulfonic acid and a CWC non-related compound 3-(N-Morpholino)propanesulfonic acid in Water.The method was fast,simple and accurate,proving that high resolution mass spectrometry is a good technique for the analysis of unknown toxicant.展开更多
On a narrow warship platform,the coordinated use of shipborne weapon systems may cause firepower conflicts,which seriously endangers the ship safety.Meanwhile,with directed-energy weapons mounted on ships,firepower co...On a narrow warship platform,the coordinated use of shipborne weapon systems may cause firepower conflicts,which seriously endangers the ship safety.Meanwhile,with directed-energy weapons mounted on ships,firepower conflicts between weapons become a“high probability event”.Aiming at the problem of firepower safety control,based on the research about the collision probability model of air crafts and space targets and according to the cone of fire model of conventional weapons and directed-energy weapons,this paper solved the firepower conflict probabilities between conventional weapons as well as between conventional weapons and directed-energy weapons respectively using the methods of probability theory,and established the firepower safety control model.Then the calculation of firepower conflict probability was carried out using the dimensionality reduction method based on the equivalent conversion of polar coordinates and the power series method based on Laplace transform.The simulation results revealed that the proposed model and calculation methods are effective and reliable,which can provide theoretical basis and technical support for resolution of firepower conflicts between weapons.展开更多
The weapon and equipment operational requirement analysis(WEORA) is a necessary condition to win a future war,among which the acquisition of knowledge about weapons and equipment is a great challenge. The main challen...The weapon and equipment operational requirement analysis(WEORA) is a necessary condition to win a future war,among which the acquisition of knowledge about weapons and equipment is a great challenge. The main challenge is that the existing weapons and equipment data fails to carry out structured knowledge representation, and knowledge navigation based on natural language cannot efficiently support the WEORA. To solve above problem, this research proposes a method based on question answering(QA) of weapons and equipment knowledge graph(WEKG) to construct and navigate the knowledge related to weapons and equipment in the WEORA. This method firstly constructs the WEKG, and builds a neutral network-based QA system over the WEKG by means of semantic parsing for knowledge navigation. Finally, the method is evaluated and a chatbot on the QA system is developed for the WEORA. Our proposed method has good performance in the accuracy and efficiency of searching target knowledge, and can well assist the WEORA.展开更多
A weapon target assignment (WTA) model satisfying expected damage probabilities with an ant colony algorithm is proposed. In order to save armament resource and attack the targets effectively, the strategy of the we...A weapon target assignment (WTA) model satisfying expected damage probabilities with an ant colony algorithm is proposed. In order to save armament resource and attack the targets effectively, the strategy of the weapon assignment is that the target with greater threat degree has higher priority to be intercepted. The effect of this WTA model is not maximizing the damage probability but satisfying the whole assignment result. Ant colony algorithm has been successfully used in many fields, especially in combination optimization. The ant colony algorithm for this WTA problem is described by analyzing path selection, pheromone update, and tabu table update. The effectiveness of the model and the algorithm is demonstrated with an example.展开更多
The concept of unmanned weapon system-of-systems(UWSoS)involves a collection of various unmanned systems to achieve or accomplish a specific goal or mission.The mission reliability of UWSoS is represented by its abili...The concept of unmanned weapon system-of-systems(UWSoS)involves a collection of various unmanned systems to achieve or accomplish a specific goal or mission.The mission reliability of UWSoS is represented by its ability to finish a required mission above the baselines of a given mission.However,issues with heterogeneity,cooperation between systems,and the emergence of UWSoS cannot be effectively solved by traditional system reliability methods.This study proposes an effective operation-loop-based mission reliability evaluation method for UWSoS by analyzing dynamic reconfiguration.First,we present a new connotation of an effective operation loop by considering the allocation of operational entities and physical resource constraints.Then,we propose an effective operationloop-based mission reliability model for a heterogeneous UWSoS according to the mission baseline.Moreover,a mission reliability evaluation algorithm is proposed under random external shocks and topology reconfiguration,revealing the evolution law of the effective operation loop and mission reliability.Finally,a typical 60-unmanned-aerial-vehicle-swarm is taken as an example to demonstrate the proposed models and methods.The mission reliability is achieved by considering external shocks,which can serve as a reference for evaluating and improving the effectiveness of UWSoS.展开更多
Recent advances in on-board radar and missile capabilities,combined with individual payload limitations,have led to increased interest in the use of unmanned combat aerial vehicles(UCAVs)for cooperative occupation dur...Recent advances in on-board radar and missile capabilities,combined with individual payload limitations,have led to increased interest in the use of unmanned combat aerial vehicles(UCAVs)for cooperative occupation during beyond-visual-range(BVR)air combat.However,prior research on occupational decision-making in BVR air combat has mostly been limited to one-on-one scenarios.As such,this study presents a practical cooperative occupation decision-making methodology for use with multiple UCAVs.The weapon engagement zone(WEZ)and combat geometry were first used to develop an advantage function for situational assessment of one-on-one engagement.An encircling advantage function was then designed to represent the cooperation of UCAVs,thereby establishing a cooperative occupation model.The corresponding objective function was derived from the one-on-one engagement advantage function and the encircling advantage function.The resulting model exhibited similarities to a mixed-integer nonlinear programming(MINLP)problem.As such,an improved discrete particle swarm optimization(DPSO)algorithm was used to identify a solution.The occupation process was then converted into a formation switching task as part of the cooperative occupation model.A series of simulations were conducted to verify occupational solutions in varying situations,including two-on-two engagement.Simulated results showed these solutions varied with initial conditions and weighting coefficients.This occupation process,based on formation switching,effectively demonstrates the viability of the proposed technique.These cooperative occupation results could provide a theoretical framework for subsequent research in cooperative BVR air combat.展开更多
Weapon project planning(WPP) plays a critical role in the process of national defense development and establishment of the future national defense force. WPP faces the backgrounds of various uncertainties, intense int...Weapon project planning(WPP) plays a critical role in the process of national defense development and establishment of the future national defense force. WPP faces the backgrounds of various uncertainties, intense inter-influence of weapon systems and involves modelling, assessment, and optimization procedures.The contents of this paper are mainly divided into three parts: first,the WPP processes are analyzed, and related elements are formulated to transform the qualitative problem to mathematics form;second, the value evaluation model of WPP solutions is proposed based on two criteria of total capability gap and total capability dispersion; third, two robustness optimization models are constructed based on the absolute robustness criterion and the robustness deviation criterion to support the robustness optimization process under multi-scenario. Finally, a case is studied to examine the feasibility and effectiveness of the proposed models and approaches.展开更多
The weapon transportation support scheduling problem on aircraft carrier deck is the key to restricting the sortie rate and combat capability of carrier-based aircraft.This paper studies the problem and presents a nov...The weapon transportation support scheduling problem on aircraft carrier deck is the key to restricting the sortie rate and combat capability of carrier-based aircraft.This paper studies the problem and presents a novel solution architecture.Taking the interference of the carrier-based aircraft deck layout on the weapon transportation route and precedence constraint into consideration,a mixed integer formulation is established to minimize the total objective,which is constituted of makespan,load variance and accumulative transfer time of support unit.Solution approach is developed for the model.Firstly,based on modeling the carrier aircraft parked on deck as convex obstacles,the path library of weapon transportation is constructed through visibility graph and Warshall-Floyd methods.We then propose a bi-population immune algorithm in which a population-based forward/backward scheduling technique,local search schemes and a chaotic catastrophe operator are embedded.Besides,the randomkey solution representation and serial scheduling generation scheme are adopted to conveniently obtain a better solution.The Taguchi method is additionally employed to determine key parameters of the algorithm.Finally,on a set of generated realistic instances,we demonstrate that the proposed algorithm outperforms all compared algorithms designed for similar optimization problems and can significantly improve the efficiency,and that the established model and the bi-population immune algorithm can effectively respond to the weapon support requirements of carrier-based aircraft under different sortie missions.展开更多
A proper weapon system is very important for a na- tional defense system. Generally, it means selecting the optimal weapon system among many alternatives, which is a multiple- attribute decision making (MADM) proble...A proper weapon system is very important for a na- tional defense system. Generally, it means selecting the optimal weapon system among many alternatives, which is a multiple- attribute decision making (MADM) problem. This paper proposes a new mathematical model based on the response surface method (RSM) and the grey relational analysis (GRA). RSM is used to obtain the experimental points and analyze the factors that have a significant impact on the selection results. GRA is used to an- alyze the trend relationship between alternatives and reference series. And then an RSM model is obtained, which can be used to calculate all alternatives and obtain ranking results. A real world application is introduced to illustrate the utilization of the model for the weapon selection problem. The results show that this model can be used to help decision-makers to make a quick comparison of alternatives and select a proper weapon system from multiple alternatives, which is an effective and adaptable method for solving the weapon system selection problem.展开更多
In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, ...In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, it is indispensable to design a target assignment model that can ensure minimizing targets survivability and weapons consumption simultaneously. Afterwards an algorithm named as improved artificial fish swarm algorithm-improved harmony search algorithm(IAFSA-IHS) is proposed to solve the problem. The effect of the proposed algorithm is demonstrated in numerical simulations, and results show that it performs positively in searching the optimal solution and solving the WTA problem.展开更多
基金supported by the National Natural Science Foundation of China(71690233)the Scientific Research Foundation of National University of Defense Technology(ZK19-16)the PLA military graduate student funding project.
文摘Equipment selection is an essential work in the research and development planning of equipment.The scientific and rational development of weapons equipment portfolios is of considerable significance to the optimization of equipment architecture design,the adequate resources allocation,and the joint combat performance.From the system view,this paper proposes a method of weapons equipment portfolios selection(WEPS)based on the contribution rate of weapon systems,providing a new idea for weapon equipment portfolio selection.Firstly,we analyze the WEPS problem and the concept of the contribution rate under the systems background.Secondly,we propose a combat network modeling method for weapon equipment systems based on the function chain.Thirdly,we propose a WEPS method based on the contribution rate,fully considering the correlation relationships between potential weapons and the old weapon systems by the combat network model,under the limitation of capability demands and budget resources,with the objective to maximally increasing the combat ability of weapon systems.Finally,we make a case study with a specific WEPS problem where the whole calculation processes and results are analyzed and exhibited to verify the feasibility and effectiveness of the proposed method model.
基金supported by the National Key R&D Program of China(2017YFC1405005)the National Natural Science Foundation of China(71690233)
文摘The weapons system portfolio selection problem arises at the equipment demonstration stage and deals with the military application requirements.Further,the contribution rate of the system is one of the important indicators to evaluate the role of a system,which can facilitate the weapons system portfolio selection.Therefore,combining the system contribution rate with system portfolio selection is the focus of this study.It also focuses on calculating the contribution rates of multiple equipment systems with various types of capabilities.The contribution rate is measured by establishing a hierarchical multi-criteria value model from three dimensions.Based on the value model,the feasible portfolios are developed under certain cost constraints and the optimal weapons system portfolios are obtained by using the classification optimization selection strategy.Finally,an illustrative example is presented to verify the feasibility of the proposed model.
文摘In order to maximize the lethality and reversibility of the non-lethal laser weapons(NLLW) at the same time and thus provide a theoretical basis for the R&D of laser weapons in the future,this paper accurately analyzed the limiting biological dose of irreversible damage to human skin caused by the NLLW.Firstly,based on the burn theory in medicine and the actual tactical background,this paper redefines the evaluation criteria of the limiting laser dose of NLLW to the human body.Secondly,on the basis of anatomical knowledge,a 5-layer finite element model(FEM) of superficial skin is proposed,constructed and verified,which can accurately describe the limiting reversible damage.Based on the optimized Pennes bioheat transfer equation,the diffusion approximation theory,the modified Beer-Lambert law,the Arrhenius equation,and combined with dynamic thermophysical parameters,this paper highly restored the temperature distribution and accurately solved the necrotic tissue distribution inside the human skin irradiated by 1064 nm laser.Finally,it is concluded that the maximum human dose of the1064 nm NLLW is 8.93 J/cm^(2),8.29J/cm^(2),and 8.17 J/cm^(2) when the light spots are 5 mm,10 mm and15 mm,respectively,and the corresponding output power of the weapon is 46.74 W,173.72 W and384.77 W.Simultaneously,the temperature and damage distribution in the tissue at the time of ultimate damage are discussed from the axial and radial dimensions,respectively.The conclusions and analysis methods proposed in this paper are of great guiding significance for future research in military,medical and many other related fields.
文摘The laser technology has made remarkable progress over the past couple of decades.It is being widely employed in diverse domains,such as holography,space sciences,spectroscopy,medical sciences,micro and power electronics,industrial engineering,and most distinctively,as directed energy military weapons.Owing to their active transmissions,laser systems are similar to microwave radars to some extent;however,unlike conventional radars,the laser operates at very high frequencies thus making it a potent enabler of narrow-beam and high energy aerial deployments,both in offensive and defensive roles.In modern avionics systems,laser target indicators and beam riders are the most common devices that are used to direct the Laser Guided Weapons(LGW)accurately to the ground targets.Additionally,compact size and outstanding angular resolution of laser-based systems motivate their use for drones and unmanned aerial applications.Moreover,the narrow-beam divergence of laser emissions offers a low probability of intercept,making it a suitable contender for secure transmissions and safety-critical operations.Furthermore,the developments in space sciences and laser technology have given synergistic potential outcomes to use laser systems in space operations.This paper comprehensively reviews laser applications and projects for strategic defense actions on the ground or in space.Additionally,a detailed analysis has been done on recent advancements of the laser technology for target indicators and range-finders.It also reviews the advancements in the field of laser communications for surveillance,its earlier state of the art,and ongoing scientific research and advancements in the domain of high energy directed laser weapons that have revolutionized the evolving military battlefield.Besides offering a comprehensive taxonomy,the paper also critically analyzes some of the recent contributions in the associated domains.
基金supported by the National Social Science Foundation of China(2022-SKJJ-C-037)the National Natural Science Foundation of China General Program(72071209).
文摘The emergence of laser technology has led to the gradual integration of laser weapon system(LaWS)into military scene,particularly in the field of anti-unmanned aerial vehicle(UAV),showcasing significant potential.However,A current limitation lies in the absence of a comprehensive quantitative approach to assess the capabilities of LaWS.To address this issue,a damage effectiveness characterization model for LaWS is established,taking into account the properties of laser transmission through the atmosphere and the thermal damage effects.By employing this model,key parameters pertaining to the effectiveness of laser damage are determined.The impact of various spatial positions and atmospheric conditions on the damage effectiveness of LaWS have been examined,employing simulation experiments with diverse parameters.The conclusions indicate that the damage effectiveness of LaWS is contingent upon the spatial position of the target,resulting in a diminished effectiveness to damage on distant,low-altitude targets.Additionally,the damage effectiveness of LaWS is heavily reliant on the atmospheric condition,particularly in complex settings such as midday and low visibility conditions,where the damage effectiveness is substantially reduced.This paper provides an accurate and effective calculation method for the rapid decisionmaking of the operators.
基金supported by the National Natural Science Foun-dation of China(Grant No.52275099).
文摘The acquisition,tracking,and pointing(ATP)system is widely used in target tracking,counter-UAV operations,and other related fields.As UAV technology develops,there is a growing demand to enhance the tracking capabilities of ATP systems.However,in practical applications,ATP systems face various design constraints and functional limitations,making it infeasible to indefinitely improve hardware performance to meet tracking requirements.As a result,tracking algorithms are required to execute increasingly complex tasks.This study introduces a multi-rate feedforward predictive controller to address issues such as low image feedback frequency and significant delays in ATP systems,which lead to tracking jitter,poor tracking performance,low precision,and target loss.At the same time,the pro-posed approach aims to improve the tracking capabilities of ATP systems for high-speed and highly maneuverable targets under conditions of low sampling feedback rates and high feedback delays.The method suggested is also characterized by its low order,fast response,and robustness to model parameter variations.In this study,an actual ATP system is built for target tracking test,and the proposed algorithm is fully validated in terms of simulation and actual system application verification.Results from both simulations and experiments demonstrate that the method effectively compensates for delays and low sampling rates.For targets with relative angular velocities ranging from 0 to 90°/s and angular accelerations between 0 and 470°/s^(2),the system improved tracking accuracy by 70.0%-89.9%at a sampling frequency of 50 Hz and a delay of 30 m s.Moreover,the compensation algorithm demonstrated consistent performance across actuators with varying characteristics,further confirming its robustness to model insensitivity.In summary,the proposed algorithm considerably enhances the tracking accuracy and capability of ATP systems for high-speed and highly maneuverable targets,reducing the probability of target loss from high speed.This approach offers a practical solution for future multi-target tracking across diverse operational scenarios.
文摘A projectile system is proposed to improve efficiency and effectiveness of damage done by anti-tank weapon system on its target by designing a ballistic projectile that can split into multiple warheads and engage a target at the same time. This idea has been developed in interest of saving time consumed from the process of reloading and additional number of rounds wasted on target during an attack. The proposed system is achieved in three steps: Firstly, a mathematical model is prepared using the basic equations of motion. Second, An Ejection Mechanism of proposed warhead is explained with the help of schematics. Third, a part of numerical simulation which is done using the MATLAB software. The final result shows various ranges and times when split can be effectively achieved. With the new system,impact points are increased and hence it has a better probability of hitting a target.
文摘Cyber operations are relatively a new phenomenon of the last two decades.During that period,they have increased in number,complexity,and agility,while their design and development have been processes well kept under secrecy.As a consequence,limited data(sets)regarding these incidents are available.Although various academic and practitioner public communities addressed some of the key points and dilemmas that surround cyber operations(such as attack,target identification and selection,and collateral damage),still methodologies and models are needed in order to plan,execute,and assess them in a responsibly and legally compliant way.Based on these facts,it is the aim of this article to propose a model that i))estimates and classifies the effects of cyber operations,and ii)assesses proportionality in order to support targeting decisions in cyber operations.In order to do that,a multi-layered fuzzy model was designed and implemented by analysing real and virtual realistic cyber operations combined with interviews and focus groups with technical e military experts.The proposed model was evaluated on two cyber operations use cases in a focus group with four technical e military experts.Both the design and the results of the evaluation are revealed in this article.
文摘N,N-dialkylaminoethane-2-sulfonic acids are environmental marker compounds of V type nerve agents,hence analysis of them is very important for verification of the chemical weapons convention(CWC).In this article,liquid chromatography-high resolution time of flight mass spectrometry coupled with accurate mass measurement were used to discriminate N,N-disopropyl aminoethane-2-sulfonic acid and a CWC non-related compound 3-(N-Morpholino)propanesulfonic acid in Water.The method was fast,simple and accurate,proving that high resolution mass spectrometry is a good technique for the analysis of unknown toxicant.
文摘On a narrow warship platform,the coordinated use of shipborne weapon systems may cause firepower conflicts,which seriously endangers the ship safety.Meanwhile,with directed-energy weapons mounted on ships,firepower conflicts between weapons become a“high probability event”.Aiming at the problem of firepower safety control,based on the research about the collision probability model of air crafts and space targets and according to the cone of fire model of conventional weapons and directed-energy weapons,this paper solved the firepower conflict probabilities between conventional weapons as well as between conventional weapons and directed-energy weapons respectively using the methods of probability theory,and established the firepower safety control model.Then the calculation of firepower conflict probability was carried out using the dimensionality reduction method based on the equivalent conversion of polar coordinates and the power series method based on Laplace transform.The simulation results revealed that the proposed model and calculation methods are effective and reliable,which can provide theoretical basis and technical support for resolution of firepower conflicts between weapons.
文摘The weapon and equipment operational requirement analysis(WEORA) is a necessary condition to win a future war,among which the acquisition of knowledge about weapons and equipment is a great challenge. The main challenge is that the existing weapons and equipment data fails to carry out structured knowledge representation, and knowledge navigation based on natural language cannot efficiently support the WEORA. To solve above problem, this research proposes a method based on question answering(QA) of weapons and equipment knowledge graph(WEKG) to construct and navigate the knowledge related to weapons and equipment in the WEORA. This method firstly constructs the WEKG, and builds a neutral network-based QA system over the WEKG by means of semantic parsing for knowledge navigation. Finally, the method is evaluated and a chatbot on the QA system is developed for the WEORA. Our proposed method has good performance in the accuracy and efficiency of searching target knowledge, and can well assist the WEORA.
文摘A weapon target assignment (WTA) model satisfying expected damage probabilities with an ant colony algorithm is proposed. In order to save armament resource and attack the targets effectively, the strategy of the weapon assignment is that the target with greater threat degree has higher priority to be intercepted. The effect of this WTA model is not maximizing the damage probability but satisfying the whole assignment result. Ant colony algorithm has been successfully used in many fields, especially in combination optimization. The ant colony algorithm for this WTA problem is described by analyzing path selection, pheromone update, and tabu table update. The effectiveness of the model and the algorithm is demonstrated with an example.
基金supported by the National Natural Science Foundation of China(72101270,72001213).
文摘The concept of unmanned weapon system-of-systems(UWSoS)involves a collection of various unmanned systems to achieve or accomplish a specific goal or mission.The mission reliability of UWSoS is represented by its ability to finish a required mission above the baselines of a given mission.However,issues with heterogeneity,cooperation between systems,and the emergence of UWSoS cannot be effectively solved by traditional system reliability methods.This study proposes an effective operation-loop-based mission reliability evaluation method for UWSoS by analyzing dynamic reconfiguration.First,we present a new connotation of an effective operation loop by considering the allocation of operational entities and physical resource constraints.Then,we propose an effective operationloop-based mission reliability model for a heterogeneous UWSoS according to the mission baseline.Moreover,a mission reliability evaluation algorithm is proposed under random external shocks and topology reconfiguration,revealing the evolution law of the effective operation loop and mission reliability.Finally,a typical 60-unmanned-aerial-vehicle-swarm is taken as an example to demonstrate the proposed models and methods.The mission reliability is achieved by considering external shocks,which can serve as a reference for evaluating and improving the effectiveness of UWSoS.
基金supported by the National Natural Science Foundation of China(No.61573286)the Aeronautical Science Foundation of China(No.20180753006)+2 种基金the Fundamental Research Funds for the Central Universities(3102019ZDHKY07)the Natural Science Foundation of Shaanxi Province(2020JQ-218)the Shaanxi Province Key Laboratory of Flight Control and Simulation Technology。
文摘Recent advances in on-board radar and missile capabilities,combined with individual payload limitations,have led to increased interest in the use of unmanned combat aerial vehicles(UCAVs)for cooperative occupation during beyond-visual-range(BVR)air combat.However,prior research on occupational decision-making in BVR air combat has mostly been limited to one-on-one scenarios.As such,this study presents a practical cooperative occupation decision-making methodology for use with multiple UCAVs.The weapon engagement zone(WEZ)and combat geometry were first used to develop an advantage function for situational assessment of one-on-one engagement.An encircling advantage function was then designed to represent the cooperation of UCAVs,thereby establishing a cooperative occupation model.The corresponding objective function was derived from the one-on-one engagement advantage function and the encircling advantage function.The resulting model exhibited similarities to a mixed-integer nonlinear programming(MINLP)problem.As such,an improved discrete particle swarm optimization(DPSO)algorithm was used to identify a solution.The occupation process was then converted into a formation switching task as part of the cooperative occupation model.A series of simulations were conducted to verify occupational solutions in varying situations,including two-on-two engagement.Simulated results showed these solutions varied with initial conditions and weighting coefficients.This occupation process,based on formation switching,effectively demonstrates the viability of the proposed technique.These cooperative occupation results could provide a theoretical framework for subsequent research in cooperative BVR air combat.
基金supported by the National Social Science Foundation of China(15GJ003-278)the National Natural Science Foundation of China(71501182)
文摘Weapon project planning(WPP) plays a critical role in the process of national defense development and establishment of the future national defense force. WPP faces the backgrounds of various uncertainties, intense inter-influence of weapon systems and involves modelling, assessment, and optimization procedures.The contents of this paper are mainly divided into three parts: first,the WPP processes are analyzed, and related elements are formulated to transform the qualitative problem to mathematics form;second, the value evaluation model of WPP solutions is proposed based on two criteria of total capability gap and total capability dispersion; third, two robustness optimization models are constructed based on the absolute robustness criterion and the robustness deviation criterion to support the robustness optimization process under multi-scenario. Finally, a case is studied to examine the feasibility and effectiveness of the proposed models and approaches.
基金the financial support of the National Natural Science Foundation of China(No.52102453)。
文摘The weapon transportation support scheduling problem on aircraft carrier deck is the key to restricting the sortie rate and combat capability of carrier-based aircraft.This paper studies the problem and presents a novel solution architecture.Taking the interference of the carrier-based aircraft deck layout on the weapon transportation route and precedence constraint into consideration,a mixed integer formulation is established to minimize the total objective,which is constituted of makespan,load variance and accumulative transfer time of support unit.Solution approach is developed for the model.Firstly,based on modeling the carrier aircraft parked on deck as convex obstacles,the path library of weapon transportation is constructed through visibility graph and Warshall-Floyd methods.We then propose a bi-population immune algorithm in which a population-based forward/backward scheduling technique,local search schemes and a chaotic catastrophe operator are embedded.Besides,the randomkey solution representation and serial scheduling generation scheme are adopted to conveniently obtain a better solution.The Taguchi method is additionally employed to determine key parameters of the algorithm.Finally,on a set of generated realistic instances,we demonstrate that the proposed algorithm outperforms all compared algorithms designed for similar optimization problems and can significantly improve the efficiency,and that the established model and the bi-population immune algorithm can effectively respond to the weapon support requirements of carrier-based aircraft under different sortie missions.
基金supported by the National Natural Science Foundation of China(51375389)
文摘A proper weapon system is very important for a na- tional defense system. Generally, it means selecting the optimal weapon system among many alternatives, which is a multiple- attribute decision making (MADM) problem. This paper proposes a new mathematical model based on the response surface method (RSM) and the grey relational analysis (GRA). RSM is used to obtain the experimental points and analyze the factors that have a significant impact on the selection results. GRA is used to an- alyze the trend relationship between alternatives and reference series. And then an RSM model is obtained, which can be used to calculate all alternatives and obtain ranking results. A real world application is introduced to illustrate the utilization of the model for the weapon selection problem. The results show that this model can be used to help decision-makers to make a quick comparison of alternatives and select a proper weapon system from multiple alternatives, which is an effective and adaptable method for solving the weapon system selection problem.
基金supported by the National Natural Science Foundation of China(61472441)
文摘In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, it is indispensable to design a target assignment model that can ensure minimizing targets survivability and weapons consumption simultaneously. Afterwards an algorithm named as improved artificial fish swarm algorithm-improved harmony search algorithm(IAFSA-IHS) is proposed to solve the problem. The effect of the proposed algorithm is demonstrated in numerical simulations, and results show that it performs positively in searching the optimal solution and solving the WTA problem.