A time-series similarity measurement method based on wavelet and matrix transform was proposed,and its anti-noise ability,sensitivity and accuracy were discussed. The time-series sequences were compressed into wavelet...A time-series similarity measurement method based on wavelet and matrix transform was proposed,and its anti-noise ability,sensitivity and accuracy were discussed. The time-series sequences were compressed into wavelet subspace,and sample feature vector and orthogonal basics of sample time-series sequences were obtained by K-L transform. Then the inner product transform was carried out to project analyzed time-series sequence into orthogonal basics to gain analyzed feature vectors. The similarity was calculated between sample feature vector and analyzed feature vector by the Euclid distance. Taking fault wave of power electronic devices for example,the experimental results show that the proposed method has low dimension of feature vector,the anti-noise ability of proposed method is 30 times as large as that of plain wavelet method,the sensitivity of proposed method is 1/3 as large as that of plain wavelet method,and the accuracy of proposed method is higher than that of the wavelet singular value decomposition method. The proposed method can be applied in similarity matching and indexing for lager time series databases.展开更多
This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(H...This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(HOSVD) approach.The design of hypersonic flight control systems is highly challenging due to the enormous complexity of the vehicle dynamics and the presence of significant uncertainties.Motivated by recent results on both LPV control and tensor-product(TP) model transformation approach,the velocity and altitude tracking control problems for the air-breathing hypersonic vehicle is reduced to that of a state feedback stabilizing controller design for a polytopic LPV system with guaranteed performances.The controller implementation is converted into a convex optimization problem with parameterdependent linear matrix inequalities(LMIs) constraints,which is intuitively tractable using LMI control toolbox.Finally,numerical simulation results demonstrate the effectiveness of the proposed approach.展开更多
针对以往稀疏编码在图像去噪过程中存在的噪声残留和缺乏对图像的边缘与细节的本质特征的保护等问题,提出了一种结合第二代Bandelet变换分块的字典学习图像去噪算法,其更好地利用了图像的几何特性进行去噪。首先,通过第二代Bandelet变...针对以往稀疏编码在图像去噪过程中存在的噪声残留和缺乏对图像的边缘与细节的本质特征的保护等问题,提出了一种结合第二代Bandelet变换分块的字典学习图像去噪算法,其更好地利用了图像的几何特性进行去噪。首先,通过第二代Bandelet变换可以灵活地根据图像几何流的正则性特征并能够自适应地获得图像的最稀疏表示来准确估计图像信息,并能自适应地选择最优的几何方向;然后,根据K-奇异值分解(K-Singular Value Decomposition,K-SVD)算法来训练学习字典;最后,通过四叉树分割对噪声图像进行自适应分块,从而去除噪声并保护图像的边缘与细节。实验结果表明,相比于其他学习字典,所提算法能更有效地保留图像的边缘特征与图像的精细结构。展开更多
基金Projects(60634020, 60904077, 60874069) supported by the National Natural Science Foundation of ChinaProject(JC200903180555A) supported by the Foundation Project of Shenzhen City Science and Technology Plan of China
文摘A time-series similarity measurement method based on wavelet and matrix transform was proposed,and its anti-noise ability,sensitivity and accuracy were discussed. The time-series sequences were compressed into wavelet subspace,and sample feature vector and orthogonal basics of sample time-series sequences were obtained by K-L transform. Then the inner product transform was carried out to project analyzed time-series sequence into orthogonal basics to gain analyzed feature vectors. The similarity was calculated between sample feature vector and analyzed feature vector by the Euclid distance. Taking fault wave of power electronic devices for example,the experimental results show that the proposed method has low dimension of feature vector,the anti-noise ability of proposed method is 30 times as large as that of plain wavelet method,the sensitivity of proposed method is 1/3 as large as that of plain wavelet method,and the accuracy of proposed method is higher than that of the wavelet singular value decomposition method. The proposed method can be applied in similarity matching and indexing for lager time series databases.
基金supported by the National Natural Science Foundation of China(6120300761304239+1 种基金61503392)the Natural Science Foundation of Shaanxi Province(2015JQ6213)
文摘This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(HOSVD) approach.The design of hypersonic flight control systems is highly challenging due to the enormous complexity of the vehicle dynamics and the presence of significant uncertainties.Motivated by recent results on both LPV control and tensor-product(TP) model transformation approach,the velocity and altitude tracking control problems for the air-breathing hypersonic vehicle is reduced to that of a state feedback stabilizing controller design for a polytopic LPV system with guaranteed performances.The controller implementation is converted into a convex optimization problem with parameterdependent linear matrix inequalities(LMIs) constraints,which is intuitively tractable using LMI control toolbox.Finally,numerical simulation results demonstrate the effectiveness of the proposed approach.
文摘针对以往稀疏编码在图像去噪过程中存在的噪声残留和缺乏对图像的边缘与细节的本质特征的保护等问题,提出了一种结合第二代Bandelet变换分块的字典学习图像去噪算法,其更好地利用了图像的几何特性进行去噪。首先,通过第二代Bandelet变换可以灵活地根据图像几何流的正则性特征并能够自适应地获得图像的最稀疏表示来准确估计图像信息,并能自适应地选择最优的几何方向;然后,根据K-奇异值分解(K-Singular Value Decomposition,K-SVD)算法来训练学习字典;最后,通过四叉树分割对噪声图像进行自适应分块,从而去除噪声并保护图像的边缘与细节。实验结果表明,相比于其他学习字典,所提算法能更有效地保留图像的边缘特征与图像的精细结构。