期刊文献+
共找到116篇文章
< 1 2 6 >
每页显示 20 50 100
基于语音信号时频特征融合的帕金森病检测方法 被引量:1
1
作者 王晨哲 季薇 +1 位作者 郑慧芬 李云 《郑州大学学报(理学版)》 CAS 北大核心 2025年第1期53-60,共8页
发音障碍是帕金森病的早期症状之一。近年来,基于语音信号的帕金森病检测的研究大多采用梅尔刻度下的相关语音特征与深度神经网络模型相结合的方法。然而,现有的模型无法充分关注语音信号的全局时序信息,且梅尔刻度特征在准确表征帕金... 发音障碍是帕金森病的早期症状之一。近年来,基于语音信号的帕金森病检测的研究大多采用梅尔刻度下的相关语音特征与深度神经网络模型相结合的方法。然而,现有的模型无法充分关注语音信号的全局时序信息,且梅尔刻度特征在准确表征帕金森病的病理信息方面效果有限。为此,提出了一种基于语音时频特征融合的帕金森病检测方法。首先,提取语音的梅尔频率倒谱系数,并将其作为模型的输入。接着,在已有的S-vectors模型中引入Conformer编码器模块,以提取语音的时域全局特征。最后,将与帕金森病语音检测相关的频域全局特征嵌入时域特征中进行时频信息融合,以实现帕金森病语音检测。在公开帕金森病语音数据集和自采语音数据集上验证了方法的有效性。 展开更多
关键词 帕金森病 梅尔频率倒谱系数 S-vectors CONFORMER 时频特征融合
在线阅读 下载PDF
特征降维与融合的水声目标识别方法 被引量:2
2
作者 李昊鑫 肖长诗 +2 位作者 元海文 郭玉滨 刘加轩 《哈尔滨工程大学学报》 北大核心 2025年第1期102-110,共9页
为解决水声目标在强噪声环境下识别困难以及特征高维问题,本文提出一种将水声信号进行离散小波变换并提取其低频系数与重组一维梅尔倒谱系数融合的方法,以减少特征维度并弥补信息损失。利用1D-CNN-LSTM神经网络在DeepShip和ShipsEar 2... 为解决水声目标在强噪声环境下识别困难以及特征高维问题,本文提出一种将水声信号进行离散小波变换并提取其低频系数与重组一维梅尔倒谱系数融合的方法,以减少特征维度并弥补信息损失。利用1D-CNN-LSTM神经网络在DeepShip和ShipsEar 2个数据集上进行实验,识别准确率均在99%以上。结果表明:该算法能够有效抑制噪声,具备较强的鲁棒性。将所提算法应用到单船识别,实验结果表明该算法能够有效区分同类型的不同船舶。 展开更多
关键词 水声目标识别 离散小波变换 梅尔倒谱系数 特征融合 联合神经网络 单船识别 深度学习 船舶辐射噪声
在线阅读 下载PDF
基于Mel倒谱系数和矢量量化的昆虫声音自动鉴别 被引量:10
3
作者 竺乐庆 王鸿斌 张真 《昆虫学报》 CAS CSCD 北大核心 2010年第8期901-907,共7页
为了给生产单位害虫管理的普通技术人员提供简便易操作的昆虫种类鉴别方法,本研究把人类语音识别领域的先进技术应用于昆虫识别,提出了一种新颖的昆虫声音自动鉴别方法,用声音参数化技术为昆虫声纹识别设计了一种简单易行的方案。声音... 为了给生产单位害虫管理的普通技术人员提供简便易操作的昆虫种类鉴别方法,本研究把人类语音识别领域的先进技术应用于昆虫识别,提出了一种新颖的昆虫声音自动鉴别方法,用声音参数化技术为昆虫声纹识别设计了一种简单易行的方案。声音信号经过预处理、分段得到一系列的声音样本,从声音样本提取Mel倒谱系数(MFCC),并用Linde-Buzo-Gray(LBG)算法对提取的MFCC进行矢量量化(VQ),所得码字作为声音样本的特征模型。特征参数之间的匹配用搜索最近邻的方法实现。本文方法在包含70种昆虫声音的库中进行了试验,取得了超过96%的识别率和理想的时间性能。试验结果证明了该方法的有效性。 展开更多
关键词 昆虫 声音识别 mel倒谱系数 LBG算法 矢量量化
在线阅读 下载PDF
基于Mel频率倒谱系数和遗传算法的煤矸界面识别研究 被引量:6
4
作者 何爱香 王平建 +1 位作者 魏广芬 张守祥 《工矿自动化》 北大核心 2013年第2期66-71,共6页
针对现有的煤矸界面识别技术采用的γ射线法不适用于顶板不含放射性元素或者放射性元素含量较低的工作面,而雷达探测法探测范围小、信号衰减严重的问题,提出了一种基于Mel频率倒谱系数和遗传算法的煤矸界面识别方法。该方法利用煤矸放... 针对现有的煤矸界面识别技术采用的γ射线法不适用于顶板不含放射性元素或者放射性元素含量较低的工作面,而雷达探测法探测范围小、信号衰减严重的问题,提出了一种基于Mel频率倒谱系数和遗传算法的煤矸界面识别方法。该方法利用煤矸放落过程中产生的声波信号的特征差异进行煤矸识别,采用Mel频率倒谱系数将去噪后的煤矸声波信号变换到频域进行处理,提取出煤矸声波信号的32维特征参数;采用遗传算法优化处理32维特征参数,得到最优参数组合;采用支持向量机和BP神经网络对最优参数进行识别。实验结果表明,该方法能够准确识别出煤矸下落状态。 展开更多
关键词 放顶煤开采 煤矸界面识别 mel频率倒谱系数 MFCC 遗传算法 支持向量机 BP神经网络
在线阅读 下载PDF
Mel频率倒谱系数平滑的耳机均衡 被引量:1
5
作者 李光炬 罗平展 +2 位作者 钱鹏 甘维明 邢锰 《应用声学》 CSCD 北大核心 2023年第1期67-75,共9页
适当均衡耳机到鼓膜的传递函数可有效提高耳机声重放效果。耳廓与耳道滤波效应引起的幅度峰谷有助于人耳听觉感知,以平直幅频响应为目标的幅度均衡无法保持适当的峰谷。该文提出了基于roex滤波器与Mel频率倒谱系数的耳机到鼓膜的传递函... 适当均衡耳机到鼓膜的传递函数可有效提高耳机声重放效果。耳廓与耳道滤波效应引起的幅度峰谷有助于人耳听觉感知,以平直幅频响应为目标的幅度均衡无法保持适当的峰谷。该文提出了基于roex滤波器与Mel频率倒谱系数的耳机到鼓膜的传递函数平滑方法,用于模拟人耳听觉感知特性和平滑耳机到鼓膜的传递函数,使均衡后的幅频响应保持相应的峰谷,避免了幅度峰谷过渡均衡。实验结果表明,进行耳机到鼓膜的传递函数平滑的幅度均衡对提高耳机的音色有显著作用,基于Mel频率倒谱系数平滑的幅度均衡对提高耳机的音色最为显著。 展开更多
关键词 耳机到鼓膜的传递函数 mel频率倒谱系数 平滑 均衡 耳机声重放
在线阅读 下载PDF
一种新的修正Mel频率映射的应力影响下变异语音识别方法
6
作者 毕继武 韩纪庆 《计算机科学》 CSCD 北大核心 2002年第12期150-153,共4页
Based on the spectrograms analysis and the individual frequency bands of speech under G-force, in this pa-per, a new Mel frequency scale is proposed, and the related MFCC (Mel Frequency Cepstrum Coefficient) is adopte... Based on the spectrograms analysis and the individual frequency bands of speech under G-force, in this pa-per, a new Mel frequency scale is proposed, and the related MFCC (Mel Frequency Cepstrum Coefficient) is adoptedas the features for recognition of stressed speech under G-force. It is shown from the experiments that the proposedmethod is better than other methods of Mel-based features for stressed speech recognition. 展开更多
关键词 变异语音识别 语音参数 mel频率映射 语音信号处理
在线阅读 下载PDF
水下蛙人呼吸声Mel倒谱特征的实验研究 被引量:5
7
作者 朱知萌 郭育 +1 位作者 王冠 章佳荣 《声学技术》 CSCD 北大核心 2017年第3期286-292,共7页
为提高水下蛙人呼吸声识别的准确度,提出一种基于Mel频率倒谱系数(Mel Frequency Cepstrum Coefficient,MFCC)的蛙人呼吸声信号特征匹配方法。计算呼吸声信号之间、信号与环境噪声及舰船辐射噪声的MFCC夹角和MFCC距离并进行匹配比较,以... 为提高水下蛙人呼吸声识别的准确度,提出一种基于Mel频率倒谱系数(Mel Frequency Cepstrum Coefficient,MFCC)的蛙人呼吸声信号特征匹配方法。计算呼吸声信号之间、信号与环境噪声及舰船辐射噪声的MFCC夹角和MFCC距离并进行匹配比较,以进行分类识别。某湖试验数据的处理结果表明:蛙人呼吸声与舰船辐射噪声及环境噪声的MFCC参数有着明显的差异,能够对蛙人呼吸声信号与干扰噪声进行区分,证明了基于MFCC特征算法的有效性,对发展港口、码头等近海海域附近的水下蛙人探测声呐和预警系统具有实际意义。 展开更多
关键词 被动声呐 水下小目标 mel频率倒谱系数 特征匹配
在线阅读 下载PDF
基于特征相对贡献度对加权Mel倒谱的改进 被引量:5
8
作者 王家盛 郭其威 +1 位作者 吴松 马建敏 《声学技术》 CSCD 北大核心 2021年第3期408-414,共7页
在声纹识别系统的搭建过程中,提高识别率的一个重要做法是使语音信号中能够提取出的特征尽可能包含更多的说话人个性特征。为了探究特征参数各分量对识别系统性能的影响,文章基于高斯混合-通用背景模型(Gaussian Mixture Model-Universa... 在声纹识别系统的搭建过程中,提高识别率的一个重要做法是使语音信号中能够提取出的特征尽可能包含更多的说话人个性特征。为了探究特征参数各分量对识别系统性能的影响,文章基于高斯混合-通用背景模型(Gaussian Mixture Model-Universal Background Model,GMM-UBM)基线系统,研究了在无噪环境中各维特征组合下的识别率,利用增减分量法定量计算出各维特征分量对识别率的相对贡献程度,并根据贡献度的强弱对各维特征分量进行合理加权,得到了贡献度拟合权重系数,将此系数用于改进梅尔倒谱系数(Mel Frequency Cepstrum Coefficient,MFCC)特征参数。仿真结果表明,对特征参数进行贡献度拟合权重系数加权后,声纹识别的正确率得到了提升。 展开更多
关键词 增减分量法 贡献度 梅尔(mel)倒谱系数 高斯混合-通用背景模型(GMM-UBM)
在线阅读 下载PDF
基于特征融合和B-SVM的鸟鸣声识别算法 被引量:4
9
作者 陈晓 曾昭优 《声学技术》 CSCD 北大核心 2024年第1期119-126,共8页
为了实现在野外通过低成本嵌入式系统识别鸟类,提出了基于特征融合和B-SVM的鸟鸣声识别方法。对鸟鸣声信号提取梅尔频率倒谱系数、翻转梅尔频率倒谱系数、短时能量和短时过零率组成特征参数,通过线性判别算法对特征参数进行特征融合。... 为了实现在野外通过低成本嵌入式系统识别鸟类,提出了基于特征融合和B-SVM的鸟鸣声识别方法。对鸟鸣声信号提取梅尔频率倒谱系数、翻转梅尔频率倒谱系数、短时能量和短时过零率组成特征参数,通过线性判别算法对特征参数进行特征融合。利用黑寡妇算法通过测试集对支持向量机模型的核参数和损失值进行优化得到B-SVM模型。利用Xeno-canto鸟鸣声数据集对本文算法进行了测试,结果表明该方法的识别准确率为93.23%。算法维度参数的大小和融合特征维度的高低是影响算法识别效果的重要因素。在相同条件下,文中所提的基于特征融合和B-SVM模型的鸟鸣声识别算法相较于其他特征参数和模型,识别的准确率更高,为野外鸟类识别提供了参考。 展开更多
关键词 鸟鸣声识别 梅尔频率倒谱系数 线性判别算法 黑寡妇优化算法 支持向量机
在线阅读 下载PDF
基于改进MFCC算法的风力机叶片故障诊断方法 被引量:6
10
作者 张家安 田家辉 +2 位作者 王铁成 邓强 梁涛 《太阳能学报》 EI CAS CSCD 北大核心 2024年第1期285-290,共6页
针对传统声信号特征处理方法无法有效提取叶片声音特征、导致叶片故障诊断准确率低的问题,提出一种基于改进梅尔频率倒谱系数(MFCC)算法的风力机叶片故障诊断方法。首先采用快速傅里叶变换(FFT)分析不同风速下叶片声音信号和风噪的频率... 针对传统声信号特征处理方法无法有效提取叶片声音特征、导致叶片故障诊断准确率低的问题,提出一种基于改进梅尔频率倒谱系数(MFCC)算法的风力机叶片故障诊断方法。首先采用快速傅里叶变换(FFT)分析不同风速下叶片声音信号和风噪的频率特性,明确叶片声音信号的频率分布区域,将全频段分为三部分;然后采用粒子群优化算法(PSO)对梅尔(Mel)函数在不同频段上的敏感度进行优化,在迭代过程中将MFCC算法提取的叶片声音特征进行聚类,以轮廓系数作为适应度函数;最后基于支持向量机(SVM)构建分类器,实现风力机叶片故障的准确识别。以华北某风电场的叶片声音采集数据为算例,考察该算法在不同风速工况下的适应性,验证该方法的有效性。 展开更多
关键词 风力机叶片 声信号处理 故障诊断 特征提取 梅尔频率倒谱系数
在线阅读 下载PDF
基于特征融合与注意力机制的鸟类声纹识别方法 被引量:2
11
作者 潘齐炜 程吉祥 +2 位作者 田甜 吴丹 曾蕊 《声学技术》 CSCD 北大核心 2024年第5期686-695,共10页
鸟类声纹识别技术是一种将经过预处理的多种鸟类声音作为输入,通过网络模型识别出相应鸟类的技术。针对真实环境下鸟类声纹识别中单一音频特征局限和模型学习特征能力不佳问题,文章提出了一种基于特征融合和注意力机制的鸟类声纹识别方... 鸟类声纹识别技术是一种将经过预处理的多种鸟类声音作为输入,通过网络模型识别出相应鸟类的技术。针对真实环境下鸟类声纹识别中单一音频特征局限和模型学习特征能力不佳问题,文章提出了一种基于特征融合和注意力机制的鸟类声纹识别方法。首先,在特征提取时分别获取梅尔频率倒谱系数和功率正则化倒谱系数,其次利用均值和方差归一化处理将两种特征融合得到新型融合特征参数MPFC;然后,以ResNet-50为主干网络在其残差模块中引入轻量化坐标注意力机制得到改进网络模型—坐标注意力残差网络;最后,将融合特征分别输入到坐标注意力残差网络(residual coordinate attention net, ResCA),ResNet-50、ResNeSt-50、DenseNet-121和EfficientNet-B0并在两个数据集Birdsdata和BirdCLEF上进行对比实验。实验结果表明,融合特征比单一特征有更好的表征能力,能够提高一定识别率,改进网络也具有较好的识别效果。 展开更多
关键词 鸟类声纹识别 特征融合 梅尔频率倒谱系数 功率正则化倒谱系
在线阅读 下载PDF
基于音频特征的水车室工作状态异常检测 被引量:2
12
作者 曾广栋 魏学锋 +2 位作者 何林 孙长江 张旋 《水电能源科学》 北大核心 2024年第8期168-172,共5页
水电站的水车室包含轴承和顶盖等机械设备,受水力因素影响,水车室的异常工作会带来较大的安全隐患,基于大数据分析的精确维护对于水车室的可靠运行至关重要。针对水车室的异常工作状态,通过模型训练、特征工程和分类模型的开发等过程,采... 水电站的水车室包含轴承和顶盖等机械设备,受水力因素影响,水车室的异常工作会带来较大的安全隐患,基于大数据分析的精确维护对于水车室的可靠运行至关重要。针对水车室的异常工作状态,通过模型训练、特征工程和分类模型的开发等过程,采用STFT、Log-Mel、MFCC等方法对音频数据进行了预处理,建立了基于音频数据的异常检测模型,并对溪洛渡水电站水车室工作状态进行了异常检测。结果表明,Log-Mel方法具有有效性。研究结果不仅降低了异常检测的成本,还为水电机组的健康监测提供了参考。 展开更多
关键词 音频数据 水车室 STFT Log-mel 梅尔频率倒频谱系数(MFCC) 时域特征 支持向量机
在线阅读 下载PDF
基于声纹特征融合的风机叶片异常识别方法
13
作者 余洪伍 汤占军 马锦雄 《电子测量与仪器学报》 CSCD 北大核心 2024年第11期99-108,共10页
为实现风机叶片异常时的准确监测,提出一种将互补集合经验模态分解与风机叶片声纹特征进行结合的方法。首先,采集到4种异常工作状态以及正常运行状态下的风机叶片的声纹数据,对其进行降噪、分帧和加窗操作的预处理,通过实验比对,选择互... 为实现风机叶片异常时的准确监测,提出一种将互补集合经验模态分解与风机叶片声纹特征进行结合的方法。首先,采集到4种异常工作状态以及正常运行状态下的风机叶片的声纹数据,对其进行降噪、分帧和加窗操作的预处理,通过实验比对,选择互补集合经验模态分解算法进行声纹数据的二次降噪,其次,对二次降噪后的帧信号进行模态分解提取模态分量,通过计算模态分量的皮尔逊相关系数筛选有效的模态分量,并对每层的模态分量提取梅尔频率倒谱系数、线性预测倒谱系数、gammatone倒谱系数、短时能量、以及短时平均过零率特征。最后,基于这些特征组合,采用支持向量机、朴素贝叶斯以及神经网络作为故障分类模型对声纹数据进行识别。研究结果表明,基于上述5种声纹特征组合在参数寻优后的神经网络模型下可以实现叶片异常的准确识别,识别准确率达到97.5%,该模型对早期异常的风机叶片识别效果较好,具有较好的泛化性能。 展开更多
关键词 梅尔频率倒谱系数 特征融合 互补集合经验模态分解 故障诊断 神经网络
在线阅读 下载PDF
羊咳嗽声的特征参数提取与识别方法 被引量:25
14
作者 宣传忠 武佩 +3 位作者 张丽娜 马彦华 张永安 邬娟 《农业机械学报》 EI CAS CSCD 北大核心 2016年第3期342-348,共7页
为在设施圈养羊只产生呼吸道疾病的初期,通过监测其咳嗽声进行疾病预警和健康状况诊断,以内蒙古地区广泛推广的杜泊羊为例,对杜泊羊的咳嗽声信号进行自动采集和计算机识别,在不增加羊咳嗽声特征参数维数的前提下,提出一种改进的梅尔频... 为在设施圈养羊只产生呼吸道疾病的初期,通过监测其咳嗽声进行疾病预警和健康状况诊断,以内蒙古地区广泛推广的杜泊羊为例,对杜泊羊的咳嗽声信号进行自动采集和计算机识别,在不增加羊咳嗽声特征参数维数的前提下,提出一种改进的梅尔频率倒谱系数(MFCC),试验结果表明,该参数和短时能量、过零率组合的14维特征参数,经过羊咳嗽声隐马尔可夫模型(HMM)识别系统,其识别率、误识别率和总识别率分别达到了86.23%、7.17%和88.43%,该组合特征参数经主成分分析可降到9维,而通过BP神经网络改善的HMM咳嗽声识别系统,对咳嗽声的识别率、误识别率和总识别率分别达到了92.54%、5.37%和95.04%,满足了杜泊羊咳嗽声识别的要求。 展开更多
关键词 杜泊羊 咳嗽声 特征参数提取 梅尔频率倒谱系数 隐马尔可夫模型
在线阅读 下载PDF
基于MFCC和GMM的个性音乐推荐模型 被引量:11
15
作者 牛滨 孔令志 +2 位作者 罗森林 潘丽敏 郭亮 《北京理工大学学报》 EI CAS CSCD 北大核心 2009年第4期351-355,共5页
提出一种基于Mel频率倒谱系数(MFCC)和高斯混合模型(GMM)的个性音乐推荐模型的建立方法.该方法采用MFCC技术提取歌曲的语音特征,并利用GMM算法生成该歌曲的模板,然后利用音乐模板库对音乐文件进行相似度计算.实验结果表明,利用该模型为... 提出一种基于Mel频率倒谱系数(MFCC)和高斯混合模型(GMM)的个性音乐推荐模型的建立方法.该方法采用MFCC技术提取歌曲的语音特征,并利用GMM算法生成该歌曲的模板,然后利用音乐模板库对音乐文件进行相似度计算.实验结果表明,利用该模型为用户推荐的歌曲平均准确率为90%. 展开更多
关键词 音乐推荐 mel频率倒谱系数 高斯混合模型
在线阅读 下载PDF
一种基于MFCC和LPCC的文本相关说话人识别方法 被引量:14
16
作者 于明 袁玉倩 +1 位作者 董浩 王哲 《计算机应用》 CSCD 北大核心 2006年第4期883-885,共3页
在说话人识别的建模过程中,为传统矢量量化模型的码字增加了方差分量,形成了一种新的连续码字分布的矢量量化模型。同时采用美尔倒谱系数及其差分和线性预测倒谱系数及其差分相结合作为识别的特征参数,来进行与文本有关的说话人识别。... 在说话人识别的建模过程中,为传统矢量量化模型的码字增加了方差分量,形成了一种新的连续码字分布的矢量量化模型。同时采用美尔倒谱系数及其差分和线性预测倒谱系数及其差分相结合作为识别的特征参数,来进行与文本有关的说话人识别。通过与动态时间规整算法和传统的矢量量化方法进行比较表明,在系统响应时间并未明显增加的基础上,该模型识别率有一定提高。 展开更多
关键词 说话人识别 线性预测倒谱系数 美尔倒谱系数 矢量量化 动态时间规整
在线阅读 下载PDF
基于Fisher线性判别分析的语音信号端点检测方法 被引量:20
17
作者 王明合 张二华 +1 位作者 唐振民 许昊 《电子与信息学报》 EI CSCD 北大核心 2015年第6期1343-1349,共7页
传统的语音端点检测方法对辅音,特别是受到噪声污染的清音部分与背景噪声之间分离能力不足。针对上述问题,该文提出一种基于Fisher线性判别分析的梅尔频率倒谱系数(F-MFCC)端点检测方法。将清音信号和背景噪声视为两类分类问题,采用Fis... 传统的语音端点检测方法对辅音,特别是受到噪声污染的清音部分与背景噪声之间分离能力不足。针对上述问题,该文提出一种基于Fisher线性判别分析的梅尔频率倒谱系数(F-MFCC)端点检测方法。将清音信号和背景噪声视为两类分类问题,采用Fisher准则求解具有判别信息的最佳投影方向,使得投影后的特征参数具有最小类内散度和最大类间散度,从而增大清音与背景噪声的可分离性。在不同语音库上的实验结果表明,F-MFCC能够在不同信噪比和背景噪声条件下提高语音端点检测的准确率。 展开更多
关键词 语音处理 语音端点检测 梅尔频率倒谱系数 FISHER线性判别分析
在线阅读 下载PDF
基于声音多特征贝叶斯网络融合的话者识别研究 被引量:14
18
作者 朱坚民 张雷 +1 位作者 翟东婷 雷静桃 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第9期2058-2067,共10页
针对基于语音单一特征提取方法所存在的话者识别准确率较低的问题,提出将话者语音中反映人耳听觉感知特性的MFCC特征和接近心理声学临界频带的1/3倍频程(1/3 octave)特征作为话者声音的特征参数,设计话者识别的贝叶斯网络,融合2种声音... 针对基于语音单一特征提取方法所存在的话者识别准确率较低的问题,提出将话者语音中反映人耳听觉感知特性的MFCC特征和接近心理声学临界频带的1/3倍频程(1/3 octave)特征作为话者声音的特征参数,设计话者识别的贝叶斯网络,融合2种声音特征参数,通过贝叶斯网络推理实现话者识别。贝叶斯网络通过学习过程确定已注册话者各声音特征的条件概率。进行话者识别时,贝叶斯网络利用贝叶斯定理及条件独立性假设融合待识别话者声音的MFCC特征和1/3倍频程特征,计算每个已注册话者对输入语音特征矢量的后验概率,根据后验概率的大小实现待识别话者的推断。话者识别实验结果表明:提出的基于声音多特征贝叶斯网络融合的话者识别方法可行有效,识别正确率达到100%。 展开更多
关键词 MFCC特征 1 3倍频程特征 贝叶斯网络 后验概率 话者识别 融合
在线阅读 下载PDF
基于深度自编码网络语音识别噪声鲁棒性研究 被引量:9
19
作者 黄丽霞 王亚楠 +1 位作者 张雪英 王洪翠 《计算机工程与应用》 CSCD 北大核心 2017年第13期49-54,共6页
为了解决传统径向基(Radial basis function,RBF)神经网络在语音识别任务中基函数中心值和半径随机初始化的问题,从人脑对语音感知的分层处理机理出发,提出利用大量无标签数据初始化网络参数的无监督预训练方式代替传统随机初始化方法,... 为了解决传统径向基(Radial basis function,RBF)神经网络在语音识别任务中基函数中心值和半径随机初始化的问题,从人脑对语音感知的分层处理机理出发,提出利用大量无标签数据初始化网络参数的无监督预训练方式代替传统随机初始化方法,使用深度自编码网络作为语音识别的声学模型,分析梅尔频率倒谱系数(Mel Frequency Cepstrum Coefficient,MFCC)和基于Gammatone听觉滤波器频率倒谱系数(Gammatone Frequency Cepstrum Coefficient,GFCC)下非特定人小词汇量孤立词的抗噪性能。实验结果表明,深度自编码网络在MFCC特征下较径向基神经网络表现出更优越的抗噪性能;而与经典的MFCC特征相比,GFCC特征在深度自编码网络下平均识别率相对提升1.87%。 展开更多
关键词 语音识别 鲁棒性 深度自编码网络 GFCC特征 MFCC特征
在线阅读 下载PDF
有效的基于内容的音频特征提取方法 被引量:6
20
作者 郑继明 魏国华 吴渝 《计算机工程与应用》 CSCD 北大核心 2009年第12期131-133,137,共4页
音频特征提取是音频分类的基础,好的特征将会有效提高分类精度。在提取频域特征Mel频率倒谱系数(MFCC)的同时,对每一帧信号做离散小波变换,提取小波域特征,把频域和小波域特征相结合计算其统计特征。通过SVM模型建立音频模板,对纯语音... 音频特征提取是音频分类的基础,好的特征将会有效提高分类精度。在提取频域特征Mel频率倒谱系数(MFCC)的同时,对每一帧信号做离散小波变换,提取小波域特征,把频域和小波域特征相结合计算其统计特征。通过SVM模型建立音频模板,对纯语音、音乐及带背景音乐的语音进行分类识别,取得了较高的识别精度。 展开更多
关键词 特征提取 小波变换 mel频率倒谱系数 支持向量机
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部