Research advances of un-symmetric constitutive equation of anisotropic fluid,influence of un-symmetric stress tensor on material functions,vibrational shear flow of the fluid with small amplitudes and rheology of anis...Research advances of un-symmetric constitutive equation of anisotropic fluid,influence of un-symmetric stress tensor on material functions,vibrational shear flow of the fluid with small amplitudes and rheology of anisotropic suspension were reported.A new concept of simple anisotropic fluid was introduced.On the basis of anisotropic principle,the simple fluid stress behaviour was described by velocity gradient tensor F and spin tensor W instead of velocity gradient tensor D in the classic Leslie-Ericksen continuum theory.Two relaxation times analyzing rheological nature of the fluid and using tensor analysis a general form of the constitutive equation of co-rotational type was introduced.More general model LCP-H for the fluid was developed.The unsymmetry of the shear stress was predicted by the present continuum theory for anisotropic viscoelastic fluid-LC polymer liquids.The influence of the relaxation times on material functions was specially studied.It is important to study the unsteady vibrational rotating flow with small amplitudes,as it is a best way to obtain knowledge of elasticity of the LC polymer,i.e.dynamic viscoelasticity.For the shear-unsymmetric stresses,two shear stresses were obtained thus two complex viscosities and two complex shear modulus(i.e.first and second one) were introduced by the constitutive equation which was defined by rotating shear rate introduced by author.For the two stability problems of fluid,such as stability of hydrodynamic flow and orientational motion,were discussed.The results show that the polymer suspension systems exhibit anisotropic character.The PNC systems can exhibit significant shear-thinning effects.For more concentrated polymer nano-suspensions,the first normal stress difference change from positive to negative,which is similar to LC polymer behavior.展开更多
随着电子设备日益微型化和集成化,热仿真已成为其设计中的关键因素。电子封装模块的热仿真通常使用传统的有限元法FEM(finite element method),存在计算效率和精度之间的矛盾,在处理大变形问题和网格畸变方面也容易造成计算不收敛,从而...随着电子设备日益微型化和集成化,热仿真已成为其设计中的关键因素。电子封装模块的热仿真通常使用传统的有限元法FEM(finite element method),存在计算效率和精度之间的矛盾,在处理大变形问题和网格畸变方面也容易造成计算不收敛,从而导致结果错误。针对该问题,提出一种基于光滑粒子动力学SPH(smoothed particle hydrodynamics)算法的电子封装模块热仿真系统。该算法基于无网格拉格朗日数值方法,通过将热仿真对象离散为1组粒子的方式求解热传导方程,从而准确地预测电子封装模块的传热与散热,无需生成并处理大量的微小网格,不用担心网格失真等问题。SPH相对于FEM,仿真精度误差保持在1%~2%,仿真效率可提升近30倍,适合用于复杂和动态系统的模拟仿真。展开更多
基金Project(10772177) supported by the National Natural Science Foundation of China
文摘Research advances of un-symmetric constitutive equation of anisotropic fluid,influence of un-symmetric stress tensor on material functions,vibrational shear flow of the fluid with small amplitudes and rheology of anisotropic suspension were reported.A new concept of simple anisotropic fluid was introduced.On the basis of anisotropic principle,the simple fluid stress behaviour was described by velocity gradient tensor F and spin tensor W instead of velocity gradient tensor D in the classic Leslie-Ericksen continuum theory.Two relaxation times analyzing rheological nature of the fluid and using tensor analysis a general form of the constitutive equation of co-rotational type was introduced.More general model LCP-H for the fluid was developed.The unsymmetry of the shear stress was predicted by the present continuum theory for anisotropic viscoelastic fluid-LC polymer liquids.The influence of the relaxation times on material functions was specially studied.It is important to study the unsteady vibrational rotating flow with small amplitudes,as it is a best way to obtain knowledge of elasticity of the LC polymer,i.e.dynamic viscoelasticity.For the shear-unsymmetric stresses,two shear stresses were obtained thus two complex viscosities and two complex shear modulus(i.e.first and second one) were introduced by the constitutive equation which was defined by rotating shear rate introduced by author.For the two stability problems of fluid,such as stability of hydrodynamic flow and orientational motion,were discussed.The results show that the polymer suspension systems exhibit anisotropic character.The PNC systems can exhibit significant shear-thinning effects.For more concentrated polymer nano-suspensions,the first normal stress difference change from positive to negative,which is similar to LC polymer behavior.
文摘随着电子设备日益微型化和集成化,热仿真已成为其设计中的关键因素。电子封装模块的热仿真通常使用传统的有限元法FEM(finite element method),存在计算效率和精度之间的矛盾,在处理大变形问题和网格畸变方面也容易造成计算不收敛,从而导致结果错误。针对该问题,提出一种基于光滑粒子动力学SPH(smoothed particle hydrodynamics)算法的电子封装模块热仿真系统。该算法基于无网格拉格朗日数值方法,通过将热仿真对象离散为1组粒子的方式求解热传导方程,从而准确地预测电子封装模块的传热与散热,无需生成并处理大量的微小网格,不用担心网格失真等问题。SPH相对于FEM,仿真精度误差保持在1%~2%,仿真效率可提升近30倍,适合用于复杂和动态系统的模拟仿真。