Since loading wave shapes are very important in the study of rock dynamical properties, a new procedure for obtaining a variety of wave shapes using equidiameter impact hammer of conventional SHPB device is proposed b...Since loading wave shapes are very important in the study of rock dynamical properties, a new procedure for obtaining a variety of wave shapes using equidiameter impact hammer of conventional SHPB device is proposed based on theoretical analysis. Experiment shows that different loading wave shapes can be obtained through varying the radius at impact end of hammer. Experiment results are quite consistent with the theoretical analysis.展开更多
A new and upcoming application is the use of 60 GHz antennas for high date rate point-to-point connections to serve Gigabit(Gi-Fi)w ireless communications.The design of M illimeter w ave(M m W)antennas has to cope w i...A new and upcoming application is the use of 60 GHz antennas for high date rate point-to-point connections to serve Gigabit(Gi-Fi)w ireless communications.The design of M illimeter w ave(M m W)antennas has to cope w ith the unadorned influences of manufacturing tolerances and losses at 60 GHz.In this paper,the concept of Substrate Integrated Waveguide(SIW)and Exponentially Tapered Slot(ETS)antenna w ere used together to design a high gain,efficient planar dielectric loaded antenna for M m W Gi-Fi w ireless communications at 60 GHz.The SIW is used to feed the antenna and a dielectric is utilized in front of the antenna to increase the gain.The dielectric loaded ETS antenna and compact SIW feed w ere fabricated on a single substrate,resulting in low cost and easy fabrication.The antenna w ith elliptical shaped dielectric loaded w as fabricated using printed circuit board process.The measured gain of the single element antenna is 10.2 dB,w hile the radiation efficiency of 96.84%is obtained at 60 GHz.The Y-junction SIW pow er divider is used to form a 1×4 array structure.M easured gain of the 1×4 array antenna is 13.3 dB,w hile the measured radiation pattern and gain are almost constant w ithin the w ide bandw idth of the antenna.展开更多
文摘Since loading wave shapes are very important in the study of rock dynamical properties, a new procedure for obtaining a variety of wave shapes using equidiameter impact hammer of conventional SHPB device is proposed based on theoretical analysis. Experiment shows that different loading wave shapes can be obtained through varying the radius at impact end of hammer. Experiment results are quite consistent with the theoretical analysis.
基金the DRDO,Government of India for providing financial patronage in executing this research work
文摘A new and upcoming application is the use of 60 GHz antennas for high date rate point-to-point connections to serve Gigabit(Gi-Fi)w ireless communications.The design of M illimeter w ave(M m W)antennas has to cope w ith the unadorned influences of manufacturing tolerances and losses at 60 GHz.In this paper,the concept of Substrate Integrated Waveguide(SIW)and Exponentially Tapered Slot(ETS)antenna w ere used together to design a high gain,efficient planar dielectric loaded antenna for M m W Gi-Fi w ireless communications at 60 GHz.The SIW is used to feed the antenna and a dielectric is utilized in front of the antenna to increase the gain.The dielectric loaded ETS antenna and compact SIW feed w ere fabricated on a single substrate,resulting in low cost and easy fabrication.The antenna w ith elliptical shaped dielectric loaded w as fabricated using printed circuit board process.The measured gain of the single element antenna is 10.2 dB,w hile the radiation efficiency of 96.84%is obtained at 60 GHz.The Y-junction SIW pow er divider is used to form a 1×4 array structure.M easured gain of the 1×4 array antenna is 13.3 dB,w hile the measured radiation pattern and gain are almost constant w ithin the w ide bandw idth of the antenna.