In this article,the effect of using water/zinc oxide nanofluid as a working fluid on the performance of solar collector is investigated experimentally.The volumetric concentration of nanoparticles is 0.4%,and the part...In this article,the effect of using water/zinc oxide nanofluid as a working fluid on the performance of solar collector is investigated experimentally.The volumetric concentration of nanoparticles is 0.4%,and the particle size is 40 nm,and the mass flow rate of the fluid varies from 1 to 3 kg/min.For this experiment,a device has been prepared with appropriate measuring instruments whose energy source is solar radiation.The solar energy absorbed by the flat plate collector is absorbed by the nanofluid of water/zinc oxide.The nanofluid is pumped to the consumer,a heat exchanger,where it heats the water.The temperature,radiation level,flow rate,and pressure in different parts of the device were measured.The pressure drop and the heat transferred are the most important results of this experimental work.The ASHRAE standard is used to calculate efficiency.The results showed that the use of water/zinc oxide nanofluid increases the collector performance compared to water.For 1 kg/min of mass flow rate,the nanofluids have a 16% increase in efficiency compared to water.From the results,it can be concluded that the choice of optimum mass flow rate in both water and nanofluid cases increases efficiency.展开更多
A zinc sulfate open framework matrix,[Zn(SO_4)(DMSO)](1),was synthesized by solvothermal evaporationusing dimethyl sulfoxide(DMSO)as the solvent.A compositeP@1,which exhibits fluorescence and room tempera-ture phospho...A zinc sulfate open framework matrix,[Zn(SO_4)(DMSO)](1),was synthesized by solvothermal evaporationusing dimethyl sulfoxide(DMSO)as the solvent.A compositeP@1,which exhibits fluorescence and room tempera-ture phosphorescence(RTP)properties,was prepared by doping 2,6-naphthalic acid(P)into matrix1at a low con-centration.P@1emitted a green RTP that was visible to the naked eye and lasted for approximately 2 s.P@1exhib-ited selective phosphorescence enhancement response towards Pb^(2+),with a detection limit of 2.52μmol·L^(-1).Themain detection mechanism is the Pb—O coordination-induced phosphorescence enhancement in the system.Inter-estingly,P@1also functioned as a dual-channel probe for the rapid detection of Fe^(3+)ions through fluorescencequenching with a detection limit of 0.038μmol·L^(-1).The recognition mechanism may be attributed to the competi-tive energy absorption betweenP@1and Fe^(3+)ions.CCDC:2388502,1.展开更多
The goethite residue generated from zinc hydrometallurgy is classified as hazardous solid waste,produced in large quantities,and results in significant zinc loss.The study was conducted on removing iron from FeSO_(4)-...The goethite residue generated from zinc hydrometallurgy is classified as hazardous solid waste,produced in large quantities,and results in significant zinc loss.The study was conducted on removing iron from FeSO_(4)-ZnSO_(4) solution,employing seed-induced nucleation methods.Analysis of the iron removal rate,residue structure,morphology,and elemental composition involved ICP,XRD,FT-IR,and SEM.The existing state of zinc was investigated by combining step-by-step dissolution using hydrochloric acid.Concurrently,iron removal tests were extended to industrial solutions to assess the influence of seeds and solution pH on zinc loss and residue yield.The results revealed that seed addition increased the iron removal rate by 3%,elevated the residual iron content by 6.39%,and mitigated zinc loss by 29.55%in the simulated solution.Seed-induced nucleation prevented excessive nuclei formation,fostering crystal stable growth and high crystallinity.In addition,the zinc content of surface adsorption and crystal internal embedding in the residue was determined,and the zinc distribution on the surface was dense.In contrast,the total amount of zinc within the crystal was higher.The test results in the industrial solution demonstrated that the introduction of seeds expanded the pH range for goethite formation and growth,and the zinc loss per ton of iron removed was reduced by 50.91 kg(34.12%)and the iron residue reduced by 0.17 t(8.72%).展开更多
Aqueous zinc metal batteries(ZMBs)which are environmentally benign and cheap can be used for grid-scale energy storage,but have a short cycling life mainly due to the poor reversibility of zinc metal anodes in mild aq...Aqueous zinc metal batteries(ZMBs)which are environmentally benign and cheap can be used for grid-scale energy storage,but have a short cycling life mainly due to the poor reversibility of zinc metal anodes in mild aqueous electrolytes.A zincophilic carbon(ZC)layer was deposited on a Zn metal foil at 450°C by the up-stream pyrolysis of a hydrogen-bonded supramolecular substance framework,as-sembled from melamine(ME)and cyanuric acid(CA).The zincophilic groups(C=O and C=N)in the ZC layer guide uniform zinc plating/stripping and eliminate dendrites and side reactions.so that assembled symmetrical batteries(ZC@Zn//ZC@Zn)have a long-term service life of 2500 h at 1 mA cm^(−2) and 1 mAh cm^(−2),which is much longer than that of bare Zn anodes(180 h).In addition,ZC@Zn//V2O5 full batteries have a higher capacity of 174 mAh g^(−1) after 1200 cycles at 2 A g^(−1) than a Zn//V_(2)O_(5) counterpart(100 mAh g^(−1)).The strategy developed for the low-temperat-ure deposition of the ZC layer is a new way to construct advanced zinc metal anodes for ZMBs.展开更多
While the moisture content of soil affects significantly the blast impulse of shallow buried explosives,the role of surface-covering water(SCW)on soil in such blast impulse remains elusive.A combined experimental and ...While the moisture content of soil affects significantly the blast impulse of shallow buried explosives,the role of surface-covering water(SCW)on soil in such blast impulse remains elusive.A combined experimental and numerical study has been carried out to characterize the effect of SCW on transferred impulse and loading magnitude of shallow buried explosives.Firstly,blast tests of shallow buried explosives were conducted,with and without the SCW,to quantitatively assess the blast loading impulse.Subsequently,finite element(FE)simulations were performed and validated against experimental measurement,with good agreement achieved.The validated FE model was then employed to predict the dynamic response of a fully-clamped metallic circular target,subjected to the explosive impact of shallow buried explosives with SCW,and explore the corresponding physical mechanisms.It was demonstrated that shallow buried explosives in saturated soil generate a greater impulse transferred towards the target relative to those in dry soil.The deformation displacement of the target plate is doubled.Increasing the height of SCW results in enhanced center peak deflection of the loaded target,accompanied by subsequent fall,due to the variation of deformation pattern of the loaded target from concentrated load to uniform load.Meanwhile,the presence of SCW increases the blast impulse transferred towards the target by three times.In addition,there exists a threshold value of the burial depth that maximizes the impact impulse.This threshold exhibits a strong sensitivity to SCW height,decreasing with increasing SCW height.An empirical formula for predicting threshold has been provided.Similar conclusions can be drawn for different explosive masses.The results provide technical guidance on blast loading intensity and its spatial distribution considering shallow buried explosives in coast-land battlefields,which can ultimately contribute to better protective designs.展开更多
ZnO thin films with varying Ta concentrations were fabricated through magnetron sputtering.The crystallinity and surface morphology of the ZnO films are significantly influenced by the incorporation of Ta,as evidenced...ZnO thin films with varying Ta concentrations were fabricated through magnetron sputtering.The crystallinity and surface morphology of the ZnO films are significantly influenced by the incorporation of Ta,as evidenced by the X-ray diffraction and scanning electron microscopy results.The lattice constants,as determined by X-ray diffraction,contradict the disparity in Ta and Zn ion radii,which is attributed to the impact of interstitial defects.This inconsistency introduces variations in carrier concentration in this experiment compared with prior studies.Subsequent exploration of the luminescent characteristics and emission mechanism of defect levels in Ta-doped ZnO films was conducted through photoluminescence.Furthermore,the factors influencing the bandgap are discussed.展开更多
Prediction of water inflow into a tunnel is a crucial prerequisite for the waterproof and drainage design of mountain tunnels in water-rich areas.Based on the proposed Baiyun Mountain Tunnel project in Guangzhou,a num...Prediction of water inflow into a tunnel is a crucial prerequisite for the waterproof and drainage design of mountain tunnels in water-rich areas.Based on the proposed Baiyun Mountain Tunnel project in Guangzhou,a numerical percolation model of random fractured rock of a tunnel underpassing a water reservoir is established to study the seepage characteristics of surrounding rock,the law of water inflow,and the change of lining water pressure,considering the local artificial boundary conditions for seepage in large rock mass,.In addition,the influences of rock permeability,fracture aperture,grouting circle thickness,and penetration are analyzed.The results show that:(1)Only fractures with aperture wider than 0.1 mm can play a significant role in water conduction in rocks with the permeability lower than 10^(-11)m^(2);(2)The greater the permeability difference between the fractures and rocks,the more remarkable the effects of fractures on the surrounding rock seepage field and cavern water inflow;(3)The sensitivity of grouting waterproof function to grouting circle thickness,grouting ring penetration,and rock permeability is significantly higher than that of tunnel buried depth and fracture aperture;(4)The lining water head is much more sensitive to the grouting circle thickness and penetration than to the tunnel buried depth;(5)With the grouting range enlarging,the impact of grouting circle permeability on the precipitation pressure role of the grouting ring increases;(6)For the interesting tunnel designed to be built at the depth of 70 m,the grouting circle with the thickness of 0.5 m and permeability of 10-^(14)m^(2)is recommended.展开更多
The electron configuration of the active sites can be effectively modulated by regulating the inherent nanostructure of the electrocatalysts,thereby enhancing their electrocatalytic performance.To tackle the unexplore...The electron configuration of the active sites can be effectively modulated by regulating the inherent nanostructure of the electrocatalysts,thereby enhancing their electrocatalytic performance.To tackle the unexplored challenge of substantial electrochemical overpotential,surface reconstruction has emerged as a necessary strategy.Focusing on key aspects such as Janus structures,overflow effects,the d-band center displacement hypothesis,and interface coupling related to electrochemical reactions is essential for water electrolysis.Emerging as frontrunners among next-generation electrocatalysts,Mott-Schottky(M-S)catalysts feature a heterojunction formed between a metal and a semiconductor,offering customizable and predictable interfacial synergy.This review offers an in-depth examination of the processes driving the hydrogen and oxygen evolution reactions(HER and OER),highlighting the benefits of employing nanoscale transition metal nitrides,carbides,oxides,and phosphides in M-S heterointerface catalysts.Furthermore,the challenges,limitations,and future prospects of employing M-S heterostructured catalysts for water splitting are thoroughly discussed.展开更多
Buckypapers(BPs)consist of carbon nanotube(CNT)membranes with good mechanical,thermal and elec-trical properties.We report the modification of CNT buckypapers by the surface deposition of a thin layer of ti-tanium dio...Buckypapers(BPs)consist of carbon nanotube(CNT)membranes with good mechanical,thermal and elec-trical properties.We report the modification of CNT buckypapers by the surface deposition of a thin layer of ti-tanium dioxide and their subsequent photocatalytic use for the removal of three wastewater pollutants:diclofenac(DF),carbofuran(CB)and methylene blue(MB).The results show the following decreases(RE)in the initial concentrations of these pollutants,REDF=99.5%,REMB=96%and RECB=90%after 90 min of exposure to UV-Vis radiation using~0.6 mg of photocatalyst.Experiments also showed that the degradation rate of diclofenac(k=0.1028 min^(−1))is respectively 3.5 and 6 times faster than the values for CB(k=0.0298 min^(−1))and MB(k=0.0174 min^(−1)),probably due to the easier bond cleavage in DF.UV-Vis irradiated solutions of these pollutants were then analyzed by mass spectrometry to identify the species formed during photocatalysis and suggest possible degradation paths for MB,DF,and CB.Data showed that the degradation of DF involves the formation of a photocyclization product through loss of HCl molecule,clearly consuming less energy than that needed for the opening of the central aromatic ring in MB,or the loss of the N-methyl amide functional group for CB.展开更多
The combination of solar disinfection and photocatalysis technology presents a viable solution for eliminating harmful pathogenic microorganisms from water.However,some photocatalysts(e.g.,zinc oxide-based composites)...The combination of solar disinfection and photocatalysis technology presents a viable solution for eliminating harmful pathogenic microorganisms from water.However,some photocatalysts(e.g.,zinc oxide-based composites)are susceptible to pH-dependent dissolution in water,which can result in the loss of photocatalysts and additional environ-mental pollution.To obtain zinc oxide-based composites with low dissolution and high antibacterial efficiency for pho-tocatalytic water disinfection,we prepared MoS_(2)/ZnO@CS composites via a precipitation method to encapsulate chitosan(CS)around MoS_(2)/ZnO.The amino groups in the CS molecules act as storerooms for hydrogen ions,which inhibits the dissolution of zinc oxide.In addition,the MoS_(2)/ZnO@CS composites exhibit high production of reactive oxygen species(ROS)and broad-spectrum antibacterial activity under simulated solar irradiation(0.1 W·cm^(-2)).This makes it an excellent antibacterial agent for solar disinfection in water treatment.展开更多
A strategy for the green synthesis of heterocyclicβ-ketosulfides via nucleophilic substitution ofα-halogenated ketone with het-eroaryl thiols in water media is presented.Compared with the available literature report...A strategy for the green synthesis of heterocyclicβ-ketosulfides via nucleophilic substitution ofα-halogenated ketone with het-eroaryl thiols in water media is presented.Compared with the available literature reports,this new method had the advantages of base-free,additives-free,simple operation,mild condition,greenness,high efficiency,tolerance of a broad scope of substrates.Furth-more,the reaction could easily be scaled up in gram scale and the products also could easily transformed to other useful organic compounds.Mechanism investigation indicated that the tautomerism of pyrimidine-2-thiol to pyrimidine-2(1H)-thione and the hy-drogen bonds played important roles in the reaction.展开更多
In sub nanometer carbon nanotubes,water exhibits unique dynamic characteristics,and in the high-frequency region of the infrared spectrum,where the stretching vibrations of the internal oxygen-hydrogen(O-H)bonds are c...In sub nanometer carbon nanotubes,water exhibits unique dynamic characteristics,and in the high-frequency region of the infrared spectrum,where the stretching vibrations of the internal oxygen-hydrogen(O-H)bonds are closely related to the hydrogen bonds(H-bonds)network between water molecules.Therefore,it is crucial to analyze the relationship between these two aspects.In this paper,the infrared spectrum and motion characteristics of the stretching vibrations of the O-H bonds in one-dimensional confined water(1DCW)and bulk water(BW)in(6,6)single-walled carbon nanotubes(SWNT)are studied by molecular dynamics simulations.The results show that the stretching vibrations of the two O-H bonds in 1DCW exhibit different frequencies in the infrared spectrum,while the O-H bonds in BW display two identical main frequency peaks.Further analysis using the spring oscillator model reveals that the difference in the stretching amplitude of the O-H bonds is the main factor causing the change in vibration frequency,where an increase in stretching amplitude leads to a decrease in spring stiffness and,consequently,a lower vibration frequency.A more in-depth study found that the interaction of H-bonds between water molecules is the fundamental cause of the increased stretching amplitude and decreased vibration frequency of the O-H bonds.Finally,by analyzing the motion trajectory of the H atoms,the dynamic differences between 1DCW and BW are clearly revealed.These findings provide a new perspective for understanding the behavior of water molecules at the nanoscale and are of significant importance in advancing the development of infrared spectroscopy detection technology.展开更多
The unavailability of high-performance and cost-effective electrocatalysts has impeded the large-scale deployment of alkaline water electrolyzers.Professor Zidong Wei's group has focused on resolving critical chal...The unavailability of high-performance and cost-effective electrocatalysts has impeded the large-scale deployment of alkaline water electrolyzers.Professor Zidong Wei's group has focused on resolving critical challenges in industrial alkaline electrolysis,particularly elucidating hydrogen and oxygen evolution reaction(HER/OER)mechanisms while addressing the persistent activity-stability trade-off.This review summarizes their decade-long progress in developing advanced electrodes,analyzing the origins of sluggish alkaline HER kinetics and OER stability limitations.Professor Wei proposes a unifying"12345 Principle"as an optimization framework.For HER electrocatalysts,they have identified that metal/metal oxide interfaces create synergistic"chimney effect"and"local electric field enhancement effect",enhancing selective intermediate adsorption,interfacial water enrichment/reorientation,and mass transport under industrial high-polarization conditions.Regarding OER,innovative strategies,including dual-ligand synergistic modulation,lattice oxygen suppression,and self-repairing surface construction,are demonstrated to balance oxygen species adsorption,optimize spin states,and dynamically reinforce metal-oxygen bonds for concurrent activity-stability enhancement.The review concludes by addressing remaining challenges in long-term industrial durability and suggesting future research priorities.展开更多
Hanyu Xu 1,Xuedan Song 1,*,Qing Zhang 1,Chang Yu 1,Jieshan Qiu 1,2,*1 Liaoning Key Lab for Energy Materials and Chemical Engineering,State Key Laboratory of Fine Chemicals,School of Chemical Engineering,Dalian Univers...Hanyu Xu 1,Xuedan Song 1,*,Qing Zhang 1,Chang Yu 1,Jieshan Qiu 1,2,*1 Liaoning Key Lab for Energy Materials and Chemical Engineering,State Key Laboratory of Fine Chemicals,School of Chemical Engineering,Dalian University of Technology,Dalian 116024,Liaoning Province,China.展开更多
Coal seam water injection in tunnels is an effective technical measure for preventing coal mine rock bursts.This study used the improved split Hopkinson pressure bar(SHPB)to apply three equal static stresses to water-...Coal seam water injection in tunnels is an effective technical measure for preventing coal mine rock bursts.This study used the improved split Hopkinson pressure bar(SHPB)to apply three equal static stresses to water-saturated coal to simulate the initial stress environment of coal at different depths.Then,dynamic mechanical experiments were conducted on the saturated coal at different depths to investigate the effects of water saturation and depth on the coal samples’dynamic mechanical properties.Under uniaxial compression and without lateral compression,the strength of coal samples decreased to varying degrees in the saturated state;under different depth conditions,the dynamic strength of coal in the saturated state decreased compared with that in the natural state.However,compared with that at 0 m,the reduction in the strength of coal under the saturated condition at 200,400,600,and 800 m was significantly reduced.The findings of this study provide a basic theoretical foundation for the prevention and control of dynamic coal mine disasters.展开更多
To investigate the explosion load characteristics and structural response law in a water mist environment in a cabin,explosion experiments are carried out.The weakening rates of the initial peak overpressure,quasistat...To investigate the explosion load characteristics and structural response law in a water mist environment in a cabin,explosion experiments are carried out.The weakening rates of the initial peak overpressure,quasistatic pressure and structural residual deflection increase with increasing working pressure of the water mist nozzle.Specifically,the weakening rate of the initial peak overpressure ranges from 7.8%to 31.0%,the quasistatic pressure weakening rate ranges from 29.2%to 41.0%,and the weakening rate of the center of the plate residual deflection ranges from 10.8%to 34.4%under the various working pressures of the nozzles.To further explore the effect of water mist explosion suppression,a method for three-dimensional numerical simulations of water mist weakening the explosion shock wave is established to explore the explosion load characteristics of the compartment and the bulkhead response law.On the basis of the dimension analysis method,empirical formulas are derived to predict the residual deflection thickness in the center of the bulkheads.These findings provide the fundamental basis for the appli-cation of water mist in anti-explosive protection.展开更多
Understanding the evolution mechanisms of water-exit cavities and flow fields evolve during highintensity interactions between vehicles and floating ice is critical for advancing the application of submarine-launched ...Understanding the evolution mechanisms of water-exit cavities and flow fields evolve during highintensity interactions between vehicles and floating ice is critical for advancing the application of submarine-launched marine equipment in low-temperature ice-prone waters.A computational fluid dynamics-finite element method(CFD-FEM) coupled framework was established to simulate bidirectional fluid-structure interactions during the water-exit process of a ventilated vehicle impacting ice in brash environments.Distinct evolution characteristics were revealed by comparatively analyzing the cavity,flow fields,hydrodynamic loading,structural deformation,and trajectory stability across three scenarios:ice-free,single-ice,and multi-ice.Furthermore,the position-dependent impact effects were characterized.The findings reveal that the impact,friction,and compression effects of ice induce bending and wrinkling of the shoulder cavity,aggravating its collapse and increasing the wetting of the vehicle,resulting in a substantial expansion of the high-velocity and vortex-dominated regions within the flow field,accompanied by more obvious water splashes.The impact of ice notably increases the kinetic energy dissipation of the vehicle during the cross-water stage and diminishes its motion stability.In the center-symmetric layout,the vehicle collides with ice only once,with high stress confined to the head.Conversely,the radial-offset layout causes secondary or even multiple collisions,resulting in high-stress areas on the shoulder of the vehicle,making it deflect and ultimately causing the tail cavity to tilt and become destabilized.The design of new vehicles suitable for ice-prone environments should focus on enhancing the impact toughness of the head structure and optimizing the surface shape design to improve the adaptability to low-temperature complex environments.展开更多
Developing efficient,durable,and precious metal-free electrocatalysts is currently a huge challenge.In this article,through a simple one-step high-temperature pyrolysis method,by incorporating various non-metallic ele...Developing efficient,durable,and precious metal-free electrocatalysts is currently a huge challenge.In this article,through a simple one-step high-temperature pyrolysis method,by incorporating various non-metallic element atoms,we prepared four different NiX(X=Cl_(2),(CH_(3)COO)_(2),(NO_(3))2,SO_(4))@CNT catalysts.Additionally,by adjusting the temperature,these four materials were expanded into twelve catalyst materials for comparative optimization of hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)activity.Ultimately,Ni(NO_(3))2@CNT-900 typically exhibits superior OER and HER activity.In 1 mol/L KOH solution with a current density of 10 mA/cm^(2),the overpotentials of HER and OER of Ni(NO_(3))2@CNT-900 are only 145 mV and 300 mV,respectively.Furthermore,the Ni(NO_(3))2@CNT-900 shows excellent durability in both HER and OER.展开更多
As the proton transport channel and binder within the catalytic layer(CL),the physicochemical properties of the ionomer can affect the CL microstructure and performance of the membrane electrode assembly.In this paper...As the proton transport channel and binder within the catalytic layer(CL),the physicochemical properties of the ionomer can affect the CL microstructure and performance of the membrane electrode assembly.In this paper,we select ionomers with different side-chain lengths and investigate the effects of the side-chain structure and content of the ionomers on the performance of membrane electrode assembly(MEA).Electrochemical tests show that at a mass ratio of 10 wt.%of ionomer/Ir(I/Ir),long-side-chain(LSC)ionomer exhibits the best performance(2.141 V@2.00 A/cm^(2),while short-side-chain(SSC)ionomer is 2.208 V@2.00 A/cm^(2)).The MEA containing LSC ionomer shows better electrochemical performance than the SSC at the same I/Ir mass ratio,especially at high current density.The MEA containing LSC ionomer has a larger average pore size and porosity,which indicates that it may have better mass-transfer properties.From the analysis of voltage loss,it can be seen that LSC ionomers have a smaller ohmic impedance and mass transfer resistance than SSC ionomers.In conclusion,LSC ionomers are more conducive to water-gas transport,which can provide excellent water electrolysis performance.This article focuses on the optimization of ionomer side chains and content,which can enhance PEM water electrolysis performance at lower cost.展开更多
文摘In this article,the effect of using water/zinc oxide nanofluid as a working fluid on the performance of solar collector is investigated experimentally.The volumetric concentration of nanoparticles is 0.4%,and the particle size is 40 nm,and the mass flow rate of the fluid varies from 1 to 3 kg/min.For this experiment,a device has been prepared with appropriate measuring instruments whose energy source is solar radiation.The solar energy absorbed by the flat plate collector is absorbed by the nanofluid of water/zinc oxide.The nanofluid is pumped to the consumer,a heat exchanger,where it heats the water.The temperature,radiation level,flow rate,and pressure in different parts of the device were measured.The pressure drop and the heat transferred are the most important results of this experimental work.The ASHRAE standard is used to calculate efficiency.The results showed that the use of water/zinc oxide nanofluid increases the collector performance compared to water.For 1 kg/min of mass flow rate,the nanofluids have a 16% increase in efficiency compared to water.From the results,it can be concluded that the choice of optimum mass flow rate in both water and nanofluid cases increases efficiency.
文摘A zinc sulfate open framework matrix,[Zn(SO_4)(DMSO)](1),was synthesized by solvothermal evaporationusing dimethyl sulfoxide(DMSO)as the solvent.A compositeP@1,which exhibits fluorescence and room tempera-ture phosphorescence(RTP)properties,was prepared by doping 2,6-naphthalic acid(P)into matrix1at a low con-centration.P@1emitted a green RTP that was visible to the naked eye and lasted for approximately 2 s.P@1exhib-ited selective phosphorescence enhancement response towards Pb^(2+),with a detection limit of 2.52μmol·L^(-1).Themain detection mechanism is the Pb—O coordination-induced phosphorescence enhancement in the system.Inter-estingly,P@1also functioned as a dual-channel probe for the rapid detection of Fe^(3+)ions through fluorescencequenching with a detection limit of 0.038μmol·L^(-1).The recognition mechanism may be attributed to the competi-tive energy absorption betweenP@1and Fe^(3+)ions.CCDC:2388502,1.
基金Project(2018YFC1900403) supported by the National Key Research and Development Program of ChinaProject(CX20210197) supported by the Postgraduate Scientific Research Innovation Project of Hunan Province,China+1 种基金Project(202206370103) supported by the China Scholarship CouncilProject(2021zzts0115) supported by the Fundamental Research Funds for the Central Universities,China。
文摘The goethite residue generated from zinc hydrometallurgy is classified as hazardous solid waste,produced in large quantities,and results in significant zinc loss.The study was conducted on removing iron from FeSO_(4)-ZnSO_(4) solution,employing seed-induced nucleation methods.Analysis of the iron removal rate,residue structure,morphology,and elemental composition involved ICP,XRD,FT-IR,and SEM.The existing state of zinc was investigated by combining step-by-step dissolution using hydrochloric acid.Concurrently,iron removal tests were extended to industrial solutions to assess the influence of seeds and solution pH on zinc loss and residue yield.The results revealed that seed addition increased the iron removal rate by 3%,elevated the residual iron content by 6.39%,and mitigated zinc loss by 29.55%in the simulated solution.Seed-induced nucleation prevented excessive nuclei formation,fostering crystal stable growth and high crystallinity.In addition,the zinc content of surface adsorption and crystal internal embedding in the residue was determined,and the zinc distribution on the surface was dense.In contrast,the total amount of zinc within the crystal was higher.The test results in the industrial solution demonstrated that the introduction of seeds expanded the pH range for goethite formation and growth,and the zinc loss per ton of iron removed was reduced by 50.91 kg(34.12%)and the iron residue reduced by 0.17 t(8.72%).
基金partially supported by the National Natural Science Foundation of China(22479022)Liaoning Revitalization Talents Program(XLYC2007129)。
文摘Aqueous zinc metal batteries(ZMBs)which are environmentally benign and cheap can be used for grid-scale energy storage,but have a short cycling life mainly due to the poor reversibility of zinc metal anodes in mild aqueous electrolytes.A zincophilic carbon(ZC)layer was deposited on a Zn metal foil at 450°C by the up-stream pyrolysis of a hydrogen-bonded supramolecular substance framework,as-sembled from melamine(ME)and cyanuric acid(CA).The zincophilic groups(C=O and C=N)in the ZC layer guide uniform zinc plating/stripping and eliminate dendrites and side reactions.so that assembled symmetrical batteries(ZC@Zn//ZC@Zn)have a long-term service life of 2500 h at 1 mA cm^(−2) and 1 mAh cm^(−2),which is much longer than that of bare Zn anodes(180 h).In addition,ZC@Zn//V2O5 full batteries have a higher capacity of 174 mAh g^(−1) after 1200 cycles at 2 A g^(−1) than a Zn//V_(2)O_(5) counterpart(100 mAh g^(−1)).The strategy developed for the low-temperat-ure deposition of the ZC layer is a new way to construct advanced zinc metal anodes for ZMBs.
基金supported by the National Natural Science Foundation of China(Grant Nos.12002156,11972185,12372136)Research Fund of State Key Laboratory of Mechanics and Control for Aerospace Structures(Grant No.MCMS-I-0222K01)。
文摘While the moisture content of soil affects significantly the blast impulse of shallow buried explosives,the role of surface-covering water(SCW)on soil in such blast impulse remains elusive.A combined experimental and numerical study has been carried out to characterize the effect of SCW on transferred impulse and loading magnitude of shallow buried explosives.Firstly,blast tests of shallow buried explosives were conducted,with and without the SCW,to quantitatively assess the blast loading impulse.Subsequently,finite element(FE)simulations were performed and validated against experimental measurement,with good agreement achieved.The validated FE model was then employed to predict the dynamic response of a fully-clamped metallic circular target,subjected to the explosive impact of shallow buried explosives with SCW,and explore the corresponding physical mechanisms.It was demonstrated that shallow buried explosives in saturated soil generate a greater impulse transferred towards the target relative to those in dry soil.The deformation displacement of the target plate is doubled.Increasing the height of SCW results in enhanced center peak deflection of the loaded target,accompanied by subsequent fall,due to the variation of deformation pattern of the loaded target from concentrated load to uniform load.Meanwhile,the presence of SCW increases the blast impulse transferred towards the target by three times.In addition,there exists a threshold value of the burial depth that maximizes the impact impulse.This threshold exhibits a strong sensitivity to SCW height,decreasing with increasing SCW height.An empirical formula for predicting threshold has been provided.Similar conclusions can be drawn for different explosive masses.The results provide technical guidance on blast loading intensity and its spatial distribution considering shallow buried explosives in coast-land battlefields,which can ultimately contribute to better protective designs.
基金supported by the National Natural Science Foundation of China(61774140).
文摘ZnO thin films with varying Ta concentrations were fabricated through magnetron sputtering.The crystallinity and surface morphology of the ZnO films are significantly influenced by the incorporation of Ta,as evidenced by the X-ray diffraction and scanning electron microscopy results.The lattice constants,as determined by X-ray diffraction,contradict the disparity in Ta and Zn ion radii,which is attributed to the impact of interstitial defects.This inconsistency introduces variations in carrier concentration in this experiment compared with prior studies.Subsequent exploration of the luminescent characteristics and emission mechanism of defect levels in Ta-doped ZnO films was conducted through photoluminescence.Furthermore,the factors influencing the bandgap are discussed.
文摘Prediction of water inflow into a tunnel is a crucial prerequisite for the waterproof and drainage design of mountain tunnels in water-rich areas.Based on the proposed Baiyun Mountain Tunnel project in Guangzhou,a numerical percolation model of random fractured rock of a tunnel underpassing a water reservoir is established to study the seepage characteristics of surrounding rock,the law of water inflow,and the change of lining water pressure,considering the local artificial boundary conditions for seepage in large rock mass,.In addition,the influences of rock permeability,fracture aperture,grouting circle thickness,and penetration are analyzed.The results show that:(1)Only fractures with aperture wider than 0.1 mm can play a significant role in water conduction in rocks with the permeability lower than 10^(-11)m^(2);(2)The greater the permeability difference between the fractures and rocks,the more remarkable the effects of fractures on the surrounding rock seepage field and cavern water inflow;(3)The sensitivity of grouting waterproof function to grouting circle thickness,grouting ring penetration,and rock permeability is significantly higher than that of tunnel buried depth and fracture aperture;(4)The lining water head is much more sensitive to the grouting circle thickness and penetration than to the tunnel buried depth;(5)With the grouting range enlarging,the impact of grouting circle permeability on the precipitation pressure role of the grouting ring increases;(6)For the interesting tunnel designed to be built at the depth of 70 m,the grouting circle with the thickness of 0.5 m and permeability of 10-^(14)m^(2)is recommended.
基金supported by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(2021L574)the Guizhou Provincial Science and Technology Foundation([2024]ZK General 425 and 438)+1 种基金the National Natural Science Foundation of China(22309033)the Academic Young Talent Foundation of Guizhou Normal University([2022]B05 and B06)。
文摘The electron configuration of the active sites can be effectively modulated by regulating the inherent nanostructure of the electrocatalysts,thereby enhancing their electrocatalytic performance.To tackle the unexplored challenge of substantial electrochemical overpotential,surface reconstruction has emerged as a necessary strategy.Focusing on key aspects such as Janus structures,overflow effects,the d-band center displacement hypothesis,and interface coupling related to electrochemical reactions is essential for water electrolysis.Emerging as frontrunners among next-generation electrocatalysts,Mott-Schottky(M-S)catalysts feature a heterojunction formed between a metal and a semiconductor,offering customizable and predictable interfacial synergy.This review offers an in-depth examination of the processes driving the hydrogen and oxygen evolution reactions(HER and OER),highlighting the benefits of employing nanoscale transition metal nitrides,carbides,oxides,and phosphides in M-S heterointerface catalysts.Furthermore,the challenges,limitations,and future prospects of employing M-S heterostructured catalysts for water splitting are thoroughly discussed.
基金MIUR,Italian Ministry for University and Research(EX-60%/2024)。
文摘Buckypapers(BPs)consist of carbon nanotube(CNT)membranes with good mechanical,thermal and elec-trical properties.We report the modification of CNT buckypapers by the surface deposition of a thin layer of ti-tanium dioxide and their subsequent photocatalytic use for the removal of three wastewater pollutants:diclofenac(DF),carbofuran(CB)and methylene blue(MB).The results show the following decreases(RE)in the initial concentrations of these pollutants,REDF=99.5%,REMB=96%and RECB=90%after 90 min of exposure to UV-Vis radiation using~0.6 mg of photocatalyst.Experiments also showed that the degradation rate of diclofenac(k=0.1028 min^(−1))is respectively 3.5 and 6 times faster than the values for CB(k=0.0298 min^(−1))and MB(k=0.0174 min^(−1)),probably due to the easier bond cleavage in DF.UV-Vis irradiated solutions of these pollutants were then analyzed by mass spectrometry to identify the species formed during photocatalysis and suggest possible degradation paths for MB,DF,and CB.Data showed that the degradation of DF involves the formation of a photocyclization product through loss of HCl molecule,clearly consuming less energy than that needed for the opening of the central aromatic ring in MB,or the loss of the N-methyl amide functional group for CB.
基金supported in part by the National Natural Science Foundation of China(12174366)Fundamental Re-search Funds for the Central Universities(WK3450000005)the Anhui Provincial Natural Science Foundation(2108085MC93).
文摘The combination of solar disinfection and photocatalysis technology presents a viable solution for eliminating harmful pathogenic microorganisms from water.However,some photocatalysts(e.g.,zinc oxide-based composites)are susceptible to pH-dependent dissolution in water,which can result in the loss of photocatalysts and additional environ-mental pollution.To obtain zinc oxide-based composites with low dissolution and high antibacterial efficiency for pho-tocatalytic water disinfection,we prepared MoS_(2)/ZnO@CS composites via a precipitation method to encapsulate chitosan(CS)around MoS_(2)/ZnO.The amino groups in the CS molecules act as storerooms for hydrogen ions,which inhibits the dissolution of zinc oxide.In addition,the MoS_(2)/ZnO@CS composites exhibit high production of reactive oxygen species(ROS)and broad-spectrum antibacterial activity under simulated solar irradiation(0.1 W·cm^(-2)).This makes it an excellent antibacterial agent for solar disinfection in water treatment.
文摘A strategy for the green synthesis of heterocyclicβ-ketosulfides via nucleophilic substitution ofα-halogenated ketone with het-eroaryl thiols in water media is presented.Compared with the available literature reports,this new method had the advantages of base-free,additives-free,simple operation,mild condition,greenness,high efficiency,tolerance of a broad scope of substrates.Furth-more,the reaction could easily be scaled up in gram scale and the products also could easily transformed to other useful organic compounds.Mechanism investigation indicated that the tautomerism of pyrimidine-2-thiol to pyrimidine-2(1H)-thione and the hy-drogen bonds played important roles in the reaction.
基金Supported by the Natural Science Foundation of China(51705326,52075339)。
文摘In sub nanometer carbon nanotubes,water exhibits unique dynamic characteristics,and in the high-frequency region of the infrared spectrum,where the stretching vibrations of the internal oxygen-hydrogen(O-H)bonds are closely related to the hydrogen bonds(H-bonds)network between water molecules.Therefore,it is crucial to analyze the relationship between these two aspects.In this paper,the infrared spectrum and motion characteristics of the stretching vibrations of the O-H bonds in one-dimensional confined water(1DCW)and bulk water(BW)in(6,6)single-walled carbon nanotubes(SWNT)are studied by molecular dynamics simulations.The results show that the stretching vibrations of the two O-H bonds in 1DCW exhibit different frequencies in the infrared spectrum,while the O-H bonds in BW display two identical main frequency peaks.Further analysis using the spring oscillator model reveals that the difference in the stretching amplitude of the O-H bonds is the main factor causing the change in vibration frequency,where an increase in stretching amplitude leads to a decrease in spring stiffness and,consequently,a lower vibration frequency.A more in-depth study found that the interaction of H-bonds between water molecules is the fundamental cause of the increased stretching amplitude and decreased vibration frequency of the O-H bonds.Finally,by analyzing the motion trajectory of the H atoms,the dynamic differences between 1DCW and BW are clearly revealed.These findings provide a new perspective for understanding the behavior of water molecules at the nanoscale and are of significant importance in advancing the development of infrared spectroscopy detection technology.
基金the National Key R&D Program of China(2021YFB4000300)National Natural Science Foundation of China(21822803,22408030,22072009,91534205,51072239)National Program on Key Basic Research Project(973 Program,2012CB720303).
文摘The unavailability of high-performance and cost-effective electrocatalysts has impeded the large-scale deployment of alkaline water electrolyzers.Professor Zidong Wei's group has focused on resolving critical challenges in industrial alkaline electrolysis,particularly elucidating hydrogen and oxygen evolution reaction(HER/OER)mechanisms while addressing the persistent activity-stability trade-off.This review summarizes their decade-long progress in developing advanced electrodes,analyzing the origins of sluggish alkaline HER kinetics and OER stability limitations.Professor Wei proposes a unifying"12345 Principle"as an optimization framework.For HER electrocatalysts,they have identified that metal/metal oxide interfaces create synergistic"chimney effect"and"local electric field enhancement effect",enhancing selective intermediate adsorption,interfacial water enrichment/reorientation,and mass transport under industrial high-polarization conditions.Regarding OER,innovative strategies,including dual-ligand synergistic modulation,lattice oxygen suppression,and self-repairing surface construction,are demonstrated to balance oxygen species adsorption,optimize spin states,and dynamically reinforce metal-oxygen bonds for concurrent activity-stability enhancement.The review concludes by addressing remaining challenges in long-term industrial durability and suggesting future research priorities.
文摘Hanyu Xu 1,Xuedan Song 1,*,Qing Zhang 1,Chang Yu 1,Jieshan Qiu 1,2,*1 Liaoning Key Lab for Energy Materials and Chemical Engineering,State Key Laboratory of Fine Chemicals,School of Chemical Engineering,Dalian University of Technology,Dalian 116024,Liaoning Province,China.
基金Projects(52225403,52074112)supported by the National Natural Science Foundation of ChinaProject(2022CFD009)supported by the Hubei Natural Science Foundation Innovation and Development Joint Fund Key Project,China+2 种基金Project(SDGZK2423)supported by the State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering,ChinaProject(HJZKYBKT2024111)supported by the Xiangyang Federation of Social Sciences“Hanjiang Think Tank”Project,ChinaProject supported by the Hubei Superior and Distinctive Discipline Group of“New Energy Vehicle and Smart Transportation”,China。
文摘Coal seam water injection in tunnels is an effective technical measure for preventing coal mine rock bursts.This study used the improved split Hopkinson pressure bar(SHPB)to apply three equal static stresses to water-saturated coal to simulate the initial stress environment of coal at different depths.Then,dynamic mechanical experiments were conducted on the saturated coal at different depths to investigate the effects of water saturation and depth on the coal samples’dynamic mechanical properties.Under uniaxial compression and without lateral compression,the strength of coal samples decreased to varying degrees in the saturated state;under different depth conditions,the dynamic strength of coal in the saturated state decreased compared with that in the natural state.However,compared with that at 0 m,the reduction in the strength of coal under the saturated condition at 200,400,600,and 800 m was significantly reduced.The findings of this study provide a basic theoretical foundation for the prevention and control of dynamic coal mine disasters.
基金supported by the National Natural Science Foundation of China(grant numbers:52201334)sup-ported by National Key Laboratory of Ship Structural Safety(grant numbers:Naklas2024-KF015-s).
文摘To investigate the explosion load characteristics and structural response law in a water mist environment in a cabin,explosion experiments are carried out.The weakening rates of the initial peak overpressure,quasistatic pressure and structural residual deflection increase with increasing working pressure of the water mist nozzle.Specifically,the weakening rate of the initial peak overpressure ranges from 7.8%to 31.0%,the quasistatic pressure weakening rate ranges from 29.2%to 41.0%,and the weakening rate of the center of the plate residual deflection ranges from 10.8%to 34.4%under the various working pressures of the nozzles.To further explore the effect of water mist explosion suppression,a method for three-dimensional numerical simulations of water mist weakening the explosion shock wave is established to explore the explosion load characteristics of the compartment and the bulkhead response law.On the basis of the dimension analysis method,empirical formulas are derived to predict the residual deflection thickness in the center of the bulkheads.These findings provide the fundamental basis for the appli-cation of water mist in anti-explosive protection.
文摘Understanding the evolution mechanisms of water-exit cavities and flow fields evolve during highintensity interactions between vehicles and floating ice is critical for advancing the application of submarine-launched marine equipment in low-temperature ice-prone waters.A computational fluid dynamics-finite element method(CFD-FEM) coupled framework was established to simulate bidirectional fluid-structure interactions during the water-exit process of a ventilated vehicle impacting ice in brash environments.Distinct evolution characteristics were revealed by comparatively analyzing the cavity,flow fields,hydrodynamic loading,structural deformation,and trajectory stability across three scenarios:ice-free,single-ice,and multi-ice.Furthermore,the position-dependent impact effects were characterized.The findings reveal that the impact,friction,and compression effects of ice induce bending and wrinkling of the shoulder cavity,aggravating its collapse and increasing the wetting of the vehicle,resulting in a substantial expansion of the high-velocity and vortex-dominated regions within the flow field,accompanied by more obvious water splashes.The impact of ice notably increases the kinetic energy dissipation of the vehicle during the cross-water stage and diminishes its motion stability.In the center-symmetric layout,the vehicle collides with ice only once,with high stress confined to the head.Conversely,the radial-offset layout causes secondary or even multiple collisions,resulting in high-stress areas on the shoulder of the vehicle,making it deflect and ultimately causing the tail cavity to tilt and become destabilized.The design of new vehicles suitable for ice-prone environments should focus on enhancing the impact toughness of the head structure and optimizing the surface shape design to improve the adaptability to low-temperature complex environments.
基金Project(145209113)supported by the Basic Research Expenses of Department of Education of Heilongjiang Province,China。
文摘Developing efficient,durable,and precious metal-free electrocatalysts is currently a huge challenge.In this article,through a simple one-step high-temperature pyrolysis method,by incorporating various non-metallic element atoms,we prepared four different NiX(X=Cl_(2),(CH_(3)COO)_(2),(NO_(3))2,SO_(4))@CNT catalysts.Additionally,by adjusting the temperature,these four materials were expanded into twelve catalyst materials for comparative optimization of hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)activity.Ultimately,Ni(NO_(3))2@CNT-900 typically exhibits superior OER and HER activity.In 1 mol/L KOH solution with a current density of 10 mA/cm^(2),the overpotentials of HER and OER of Ni(NO_(3))2@CNT-900 are only 145 mV and 300 mV,respectively.Furthermore,the Ni(NO_(3))2@CNT-900 shows excellent durability in both HER and OER.
基金Project(52271013)supported by the National Natural Science Foundation of ChinaProject(23DZ1200600)supported by the Science and Technology Innovation Action Plan of Shanghai,China。
文摘As the proton transport channel and binder within the catalytic layer(CL),the physicochemical properties of the ionomer can affect the CL microstructure and performance of the membrane electrode assembly.In this paper,we select ionomers with different side-chain lengths and investigate the effects of the side-chain structure and content of the ionomers on the performance of membrane electrode assembly(MEA).Electrochemical tests show that at a mass ratio of 10 wt.%of ionomer/Ir(I/Ir),long-side-chain(LSC)ionomer exhibits the best performance(2.141 V@2.00 A/cm^(2),while short-side-chain(SSC)ionomer is 2.208 V@2.00 A/cm^(2)).The MEA containing LSC ionomer shows better electrochemical performance than the SSC at the same I/Ir mass ratio,especially at high current density.The MEA containing LSC ionomer has a larger average pore size and porosity,which indicates that it may have better mass-transfer properties.From the analysis of voltage loss,it can be seen that LSC ionomers have a smaller ohmic impedance and mass transfer resistance than SSC ionomers.In conclusion,LSC ionomers are more conducive to water-gas transport,which can provide excellent water electrolysis performance.This article focuses on the optimization of ionomer side chains and content,which can enhance PEM water electrolysis performance at lower cost.