An innovative technology,nitric acid pressure leaching of limonitic laterite ores,was proposed by our research team.The HNO3 regeneration is considerable significance for the improvement of the proposed technology and...An innovative technology,nitric acid pressure leaching of limonitic laterite ores,was proposed by our research team.The HNO3 regeneration is considerable significance for the improvement of the proposed technology and its commercial application,but it has not been systematically investigated.Herein,regenerating HNO3 from Ca(NO3)2 solution with low-cost H2SO4,and simultaneous synthesis of fibrous CaSO4·2H2O by-products were studied.As a theoretical basis,the solubility of CaSO4·2H2O in HNO3 medium is studied.It is concluded that the solubility of CaSO4·2H2O increases with increasing temperature or increasing HNO3 concentration,which has considerable guiding significance for the subsequent experimental research and analysis.Then,the effects of various factors on the residual Ca^2+ concentration of filtrate,the regenerated HNO3 concentration and the morphology of synthesized products are investigated using ICP-AES and SEM.And the effect mechanism is also analyzed.The results indicate the regenerated HNO3 concentration reaches 116 g/L with the residual Ca^2+ concentration being 9.7 g/L at the optimum conditions.Moreover,fibrous CaSO4·2H2O by-products with high aspect ratios(length,406.32μm;diameter,14.71μm;aspect ratio,27.62)can be simultaneously synthesized.展开更多
Plant residue application is an important way to maintain soil productivity. In order to determine whether walnut leaf can be returned to soil or not and get the conditions of efficient decomposition, the effect of wa...Plant residue application is an important way to maintain soil productivity. In order to determine whether walnut leaf can be returned to soil or not and get the conditions of efficient decomposition, the effect of walnut (Juglans sigillata Dode) leaf decomposition under various conditions (different temperatures, durations and leaf-soil ratios) upon soil chemicals and biological properties were analyzed. Compared with the original soil, adding walnut leaf to soil could decrease soil pH, increase EC, nutrient contents, microbial quantity and enzyme activities. Total nitrogen, total organic carbon and organic matter increased with the increasing of decomposition duration, temperature and leaf-soil ratio. Enzyme activities changed with different decomposition conditions, but the highest activities of alkaline phosphatase and catalase were associated with the lower temperature (15℃), the highest concentration (10 : 100) and the shortest duration (0 day). Walnut leaves decomposition for 20 or 30 days at 15℃ and with 10 : 100 ratio significantly promoted bacteria, fungi and the total microbial quantity. Walnut leaves can be returned to soil because their decomposition could improve relevant indicators of soil fertility, decomposition conditions as shorter durations (20 days), lower temperature ( 15 ℃) and higher concentrations of leaves ( 10 : 100) were the more effective decomposition conditions for walnut leaves.展开更多
The hydrolysis process for Silver carp by-products was studied. Protein hydrolysate was prepared with proteolytic enzyme, Alcalase. Hydrolysis conditions were optimized by the regression model of three factors five le...The hydrolysis process for Silver carp by-products was studied. Protein hydrolysate was prepared with proteolytic enzyme, Alcalase. Hydrolysis conditions were optimized by the regression model of three factors five levels quadratic rotation perpendicular regressive design. The optimum hydrolysis conditions of hydrolyzing the protein of Silver carp by-products were determined to be concentration of enzyme (E/S) 3.33%, pH 8.54, hydrolyzing temperature 58 ℃, reaction time 90 min, concentration of substrate 8%. Nitrogen recovery was more than 75%.展开更多
基金Project(2182040)supported by the Beijing Natural Science Foundation,ChinaProjects(51674026,51974025,U1802253)supported by the National Natural Science Foundation of ChinaProject(FRF-TT-19-001)supported by the Fundamental Research Funds for the Central Universities,China。
文摘An innovative technology,nitric acid pressure leaching of limonitic laterite ores,was proposed by our research team.The HNO3 regeneration is considerable significance for the improvement of the proposed technology and its commercial application,but it has not been systematically investigated.Herein,regenerating HNO3 from Ca(NO3)2 solution with low-cost H2SO4,and simultaneous synthesis of fibrous CaSO4·2H2O by-products were studied.As a theoretical basis,the solubility of CaSO4·2H2O in HNO3 medium is studied.It is concluded that the solubility of CaSO4·2H2O increases with increasing temperature or increasing HNO3 concentration,which has considerable guiding significance for the subsequent experimental research and analysis.Then,the effects of various factors on the residual Ca^2+ concentration of filtrate,the regenerated HNO3 concentration and the morphology of synthesized products are investigated using ICP-AES and SEM.And the effect mechanism is also analyzed.The results indicate the regenerated HNO3 concentration reaches 116 g/L with the residual Ca^2+ concentration being 9.7 g/L at the optimum conditions.Moreover,fibrous CaSO4·2H2O by-products with high aspect ratios(length,406.32μm;diameter,14.71μm;aspect ratio,27.62)can be simultaneously synthesized.
基金Supported by Guizhou Science and Technology Major Project([2011]6011)the National Key Technology R&D Program(2014BAD23B03)
文摘Plant residue application is an important way to maintain soil productivity. In order to determine whether walnut leaf can be returned to soil or not and get the conditions of efficient decomposition, the effect of walnut (Juglans sigillata Dode) leaf decomposition under various conditions (different temperatures, durations and leaf-soil ratios) upon soil chemicals and biological properties were analyzed. Compared with the original soil, adding walnut leaf to soil could decrease soil pH, increase EC, nutrient contents, microbial quantity and enzyme activities. Total nitrogen, total organic carbon and organic matter increased with the increasing of decomposition duration, temperature and leaf-soil ratio. Enzyme activities changed with different decomposition conditions, but the highest activities of alkaline phosphatase and catalase were associated with the lower temperature (15℃), the highest concentration (10 : 100) and the shortest duration (0 day). Walnut leaves decomposition for 20 or 30 days at 15℃ and with 10 : 100 ratio significantly promoted bacteria, fungi and the total microbial quantity. Walnut leaves can be returned to soil because their decomposition could improve relevant indicators of soil fertility, decomposition conditions as shorter durations (20 days), lower temperature ( 15 ℃) and higher concentrations of leaves ( 10 : 100) were the more effective decomposition conditions for walnut leaves.
基金Heilongjiang Province Science and Technology Key Project
文摘The hydrolysis process for Silver carp by-products was studied. Protein hydrolysate was prepared with proteolytic enzyme, Alcalase. Hydrolysis conditions were optimized by the regression model of three factors five levels quadratic rotation perpendicular regressive design. The optimum hydrolysis conditions of hydrolyzing the protein of Silver carp by-products were determined to be concentration of enzyme (E/S) 3.33%, pH 8.54, hydrolyzing temperature 58 ℃, reaction time 90 min, concentration of substrate 8%. Nitrogen recovery was more than 75%.