In this paper a semi-direct visual odometry and mapping system is proposed with a RGB-D camera,which combines the merits of both feature based and direct based methods.The presented system directly estimates the camer...In this paper a semi-direct visual odometry and mapping system is proposed with a RGB-D camera,which combines the merits of both feature based and direct based methods.The presented system directly estimates the camera motion of two consecutive RGB-D frames by minimizing the photometric error.To permit outliers and noise,a robust sensor model built upon the t-distribution and an error function mixing depth and photometric errors are used to enhance the accuracy and robustness.Local graph optimization based on key frames is used to reduce the accumulative error and refine the local map.The loop closure detection method,which combines the appearance similarity method and spatial location constraints method,increases the speed of detection.Experimental results demonstrate that the proposed approach achieves higher accuracy on the motion estimation and environment reconstruction compared to the other state-of-the-art methods. Moreover,the proposed approach works in real-time on a laptop without a GPU,which makes it attractive for robots equipped with limited computational resources.展开更多
煤矿井下视觉同步定位与地图构建SLAM(Simultaneous Localization and Mapping)应用中,光照变化与低纹理场景严重影响特征点的提取和匹配结果,导致位姿估计失败,影响定位精度。提出一种基于改进定向快速旋转二值描述符ORB(Oriented Fast...煤矿井下视觉同步定位与地图构建SLAM(Simultaneous Localization and Mapping)应用中,光照变化与低纹理场景严重影响特征点的提取和匹配结果,导致位姿估计失败,影响定位精度。提出一种基于改进定向快速旋转二值描述符ORB(Oriented Fast and Rotated Brief)-SLAM3算法的煤矿井下移动机器人双目视觉定位算法SL-SLAM。针对光照变化场景,在前端使用光照稳定性的Super-Point特征点提取网络替换原始ORB特征点提取算法,并提出一种特征点网格限定法,有效剔除无效特征点区域,增加位姿估计稳定性。针对低纹理场景,在前端引入稳定的线段检测器LSD(Line Segment Detector)线特征提取算法,并提出一种点线联合算法,按照特征点网格对线特征进行分组,根据特征点的匹配结果进行线特征匹配,降低线特征匹配复杂度,节约位姿估计时间。构建了点特征和线特征的重投影误差模型,在线特征残差模型中添加角度约束,通过点特征和线特征的位姿增量雅可比矩阵建立点线特征重投影误差统一成本函数。局部建图线程使用ORB-SLAM3经典的局部优化方法调整点、线特征和关键帧位姿,并在后端线程中进行回环修正、子图融合和全局捆绑调整BA(Bundle Adjustment)。在EuRoC数据集上的试验结果表明,SL-SLAM的绝对位姿误差APE(Absolute Pose Error)指标优于其他对比算法,并取得了与真值最接近的轨迹预测结果:均方根误差相较于ORB-SLAM3降低了17.3%。在煤矿井下模拟场景中的试验结果表明,SL-SLAM能适应光照变化和低纹理场景,可以满足煤矿井下移动机器人的定位精度和稳定性要求。展开更多
无人车单一传感器同步定位与地图构建(simultaneous localization and mapping,SLAM)算法鲁棒性较差,现有多传感器融合方案则较少考虑车辆运动约束,导致横向定位漂移。为此,提出一种基于ORB-SLAM的视觉-惯性-车轮紧耦合优化方法,将三者...无人车单一传感器同步定位与地图构建(simultaneous localization and mapping,SLAM)算法鲁棒性较差,现有多传感器融合方案则较少考虑车辆运动约束,导致横向定位漂移。为此,提出一种基于ORB-SLAM的视觉-惯性-车轮紧耦合优化方法,将三者约束统一纳入后端的捆集优化(bundle adjustment,BA)。首先给出视觉里程计、惯性测量单元(inertial measurement unit,IMU)和基于阿克曼车辆模型的车轮里程计残差模型,然后建立基于ORB-SLAM的单目视觉-惯性-车轮融合的SLAM系统优化框架。在KAIST数据集和实际校园场景下的实验结果表明,与其他常用SLAM方法相比,本文改进算法有效减少了误差累积,定位与地图构建结果更稳健且精确。展开更多
传统视觉即时定位与建图(SLAM)算法若无回环检测可能会存在累积误差无法消除的现象,即使有回环检测,也因准确率和效率比较低而无法应用于轻量级设备上,为此,研究一种回环检测优化的视觉SLAM算法.前端估计时,对相邻帧图像进行ORB(oriente...传统视觉即时定位与建图(SLAM)算法若无回环检测可能会存在累积误差无法消除的现象,即使有回环检测,也因准确率和效率比较低而无法应用于轻量级设备上,为此,研究一种回环检测优化的视觉SLAM算法.前端估计时,对相邻帧图像进行ORB(oriented fast and rotated brief)特征提取与匹配,对匹配成功的特征点进行PnP(perspective-n-point)求解,获得相机运动估计并筛选出关键帧图像;后端优化时,利用SqueezeNet卷积神经网络(CNN)提取图像的特征向量,计算余弦相似度判断是否出现回环,若出现回环则在位姿图中增加相应约束,利用图优化理论对全局位姿进行整体优化;最后利用项目组制作的数据集和TUM(technical university of munich)公开数据集进行测试与对比.研究结果表明:相比于无回环检测算法,本文方法可以成功检测到回环并为全局轨迹优化增添约束;相比于传统词袋法,在回环检测准确率相同的情况下,本文方法召回率可提高21%且计算耗时减少74%;与RGB-D(red green blue-depth)SLAM算法相比,本文方法建图误差可降低29%.展开更多
基金Supported by the National Natural Science Foundation of China(61501034)
文摘In this paper a semi-direct visual odometry and mapping system is proposed with a RGB-D camera,which combines the merits of both feature based and direct based methods.The presented system directly estimates the camera motion of two consecutive RGB-D frames by minimizing the photometric error.To permit outliers and noise,a robust sensor model built upon the t-distribution and an error function mixing depth and photometric errors are used to enhance the accuracy and robustness.Local graph optimization based on key frames is used to reduce the accumulative error and refine the local map.The loop closure detection method,which combines the appearance similarity method and spatial location constraints method,increases the speed of detection.Experimental results demonstrate that the proposed approach achieves higher accuracy on the motion estimation and environment reconstruction compared to the other state-of-the-art methods. Moreover,the proposed approach works in real-time on a laptop without a GPU,which makes it attractive for robots equipped with limited computational resources.
文摘煤矿井下视觉同步定位与地图构建SLAM(Simultaneous Localization and Mapping)应用中,光照变化与低纹理场景严重影响特征点的提取和匹配结果,导致位姿估计失败,影响定位精度。提出一种基于改进定向快速旋转二值描述符ORB(Oriented Fast and Rotated Brief)-SLAM3算法的煤矿井下移动机器人双目视觉定位算法SL-SLAM。针对光照变化场景,在前端使用光照稳定性的Super-Point特征点提取网络替换原始ORB特征点提取算法,并提出一种特征点网格限定法,有效剔除无效特征点区域,增加位姿估计稳定性。针对低纹理场景,在前端引入稳定的线段检测器LSD(Line Segment Detector)线特征提取算法,并提出一种点线联合算法,按照特征点网格对线特征进行分组,根据特征点的匹配结果进行线特征匹配,降低线特征匹配复杂度,节约位姿估计时间。构建了点特征和线特征的重投影误差模型,在线特征残差模型中添加角度约束,通过点特征和线特征的位姿增量雅可比矩阵建立点线特征重投影误差统一成本函数。局部建图线程使用ORB-SLAM3经典的局部优化方法调整点、线特征和关键帧位姿,并在后端线程中进行回环修正、子图融合和全局捆绑调整BA(Bundle Adjustment)。在EuRoC数据集上的试验结果表明,SL-SLAM的绝对位姿误差APE(Absolute Pose Error)指标优于其他对比算法,并取得了与真值最接近的轨迹预测结果:均方根误差相较于ORB-SLAM3降低了17.3%。在煤矿井下模拟场景中的试验结果表明,SL-SLAM能适应光照变化和低纹理场景,可以满足煤矿井下移动机器人的定位精度和稳定性要求。
文摘传统视觉即时定位与建图(SLAM)算法若无回环检测可能会存在累积误差无法消除的现象,即使有回环检测,也因准确率和效率比较低而无法应用于轻量级设备上,为此,研究一种回环检测优化的视觉SLAM算法.前端估计时,对相邻帧图像进行ORB(oriented fast and rotated brief)特征提取与匹配,对匹配成功的特征点进行PnP(perspective-n-point)求解,获得相机运动估计并筛选出关键帧图像;后端优化时,利用SqueezeNet卷积神经网络(CNN)提取图像的特征向量,计算余弦相似度判断是否出现回环,若出现回环则在位姿图中增加相应约束,利用图优化理论对全局位姿进行整体优化;最后利用项目组制作的数据集和TUM(technical university of munich)公开数据集进行测试与对比.研究结果表明:相比于无回环检测算法,本文方法可以成功检测到回环并为全局轨迹优化增添约束;相比于传统词袋法,在回环检测准确率相同的情况下,本文方法召回率可提高21%且计算耗时减少74%;与RGB-D(red green blue-depth)SLAM算法相比,本文方法建图误差可降低29%.