期刊文献+
共找到105篇文章
< 1 2 6 >
每页显示 20 50 100
基于VSLAM的室内场景重建与虚实遮挡的边缘优化方法
1
作者 刘佳 张增伟 陈大鹏 《计算机辅助设计与图形学学报》 北大核心 2025年第5期744-752,共9页
在增强现实环境中,虚拟物体和真实物体的融合效果经常受到虚实遮挡的影响.为了提升虚实遮挡效果,提出一种室内场景下基于视觉同步定位与建图(VSLAM)的三维物体稠密重建与分割的方法.首先利用YOLOv5s和ORB-SLAM2检测并去除环境中的动态... 在增强现实环境中,虚拟物体和真实物体的融合效果经常受到虚实遮挡的影响.为了提升虚实遮挡效果,提出一种室内场景下基于视觉同步定位与建图(VSLAM)的三维物体稠密重建与分割的方法.首先利用YOLOv5s和ORB-SLAM2检测并去除环境中的动态特征点,只利用静态特征点构建准确的点云地图;然后使用OPTICS聚类算法约束体素边缘并进行网格分割;最后通过结合形状先验算法对分割后的点云进行预测重建,使分割的物体边缘更加准确.在多个数据集上检验了所提方法,并执行动态特征点去除和虚实遮挡实验.结果表明,在动态场景下相比传统ORB-SLAM2,相机的定位精度提升了92.62%,点云的重建精度提升了35.00%,说明该方法可以准确地定位虚拟物体和真实物体的遮挡边缘并进行分割,同时保持形状化的重建结果,使得虚实遮挡效果更加真实自然. 展开更多
关键词 增强现实 虚实遮挡 视觉同步定位与建图 三维重建 图像分割
在线阅读 下载PDF
基于自适应阈值和速度优化的轻量化语义VSLAM方法
2
作者 齐浩 付悦欣 +2 位作者 胡祝华 吴佳琪 赵瑶池 《北京航空航天大学学报》 北大核心 2025年第7期2562-2572,共11页
视觉同步定位与地图构建(VSLAM)是一种利用视觉等传感器来获取未知环境信息的技术,广泛应用于无人驾驶、机器人、增强现实等领域。然而,室内场景下的VSLAM对动态对象进行像素级的语义分割存在较高的计算开销,并且光照变化使得动态物体... 视觉同步定位与地图构建(VSLAM)是一种利用视觉等传感器来获取未知环境信息的技术,广泛应用于无人驾驶、机器人、增强现实等领域。然而,室内场景下的VSLAM对动态对象进行像素级的语义分割存在较高的计算开销,并且光照变化使得动态物体的外观也发生变化,导致其与静态环境产生遮挡或混淆。针对以上问题,提出了一种基于自适应阈值和速度优化的轻量化语义VSLAM模型。采用了轻量化的一阶段目标检测网络YOLOv7-tiny,结合光流算法,有效地检测了图像的动态区域,并对不稳定特征点进行了剔除。同时,特征点提取算法基于输入图像的对比度信息,自适应地调整阈值。结合二进制词袋与局部建图线程精简的优化方法,加快了加载和匹配速度,提高了系统在室内动态场景下的运行速度。实验结果表明:所提算法在室内高动态场景下能够有效地剔除动态特征点,提高了相机的定位精度。在运行速率方面平均处理速度达到了19.8 FPS,在实际场景下可以满足实时性的需求。 展开更多
关键词 vslam 动态场景 YOLOv7-tiny 自适应阈值 特征点
在线阅读 下载PDF
面向强光环境基于灰度不变假设的VSLAM算法
3
作者 陈孟元 符乙 +1 位作者 李鹏飞 徐奥 《中国惯性技术学报》 北大核心 2025年第4期350-358,366,共10页
针对移动机器人在强光环境运动时易出现特征提取困难,极端光照环境下灰度不变假设失效导致光流跟踪误差较大的问题,提出了一种融合改进高光抑制和光流网络的视觉同步定位与地图构建(VSLAM)算法。首先,为了保证图像光照一致性,设计了一... 针对移动机器人在强光环境运动时易出现特征提取困难,极端光照环境下灰度不变假设失效导致光流跟踪误差较大的问题,提出了一种融合改进高光抑制和光流网络的视觉同步定位与地图构建(VSLAM)算法。首先,为了保证图像光照一致性,设计了一种基于高光注意力机制的高光抑制网络,引导模型关注高光特征信息。其次,针对灰度不变约束的场景受限问题,提出了一种基于蛇形卷积的光流网络,将基于灰度不变假设的光流法与卷积特征相结合,提取并跟踪卷积特征点,从而得到对光照稳健的光流法。最后,在具有光照变换的公开数据集和真实场景中进行验证。实验结果表明,所提算法在KITTI数据集上与OV2SLAM算法相比,绝对轨迹误差平均降低6.86%,相对位姿误差平均降低17.30%;在真实场景中与OV2SLAM算法相比,相对位姿误差降低了13.23%。 展开更多
关键词 视觉同步定位与地图构建 强光环境 灰度不变假设 高光抑制 光流法
在线阅读 下载PDF
用于VSLAM系统的CNN在FPGA平台上的加速 被引量:1
4
作者 郁媛 李沛君 +2 位作者 王光奇 张德兵 张春 《计算机工程与设计》 北大核心 2024年第1期71-78,共8页
为实现视觉同步定位与建图系统中卷积神经网络在FPGA上的加速,基于SuperPoint模型设计一种低功耗高效CNN加速器及相应的SoC系统。采用循环分块、数据复用、计算单元展开和双缓冲策略充分利用加速器的片上资源;为提高突发传输效率,预先... 为实现视觉同步定位与建图系统中卷积神经网络在FPGA上的加速,基于SuperPoint模型设计一种低功耗高效CNN加速器及相应的SoC系统。采用循环分块、数据复用、计算单元展开和双缓冲策略充分利用加速器的片上资源;为提高突发传输效率,预先对权重参数重排;提出Pack模块和Unpack模块,设计多通道数据传输,用于提高传输带宽。在Ultra96-V2 FPGA平台上部署整个SoC系统,在仅3 W左右的功耗下实现25.63 GOPS的吞吐量,其BRAM效率、DSP效率、性能密度和功耗效率相比之前的文献有明显优势。 展开更多
关键词 同步定位与建图系统 图像处理 卷积加速 数据复用 并行计算 突发传输 软硬件协作
在线阅读 下载PDF
基于多机器人的协同VSLAM综述 被引量:1
5
作者 王曦杨 陈炜峰 +3 位作者 尚光涛 周铖君 李振雄 徐崇辉 《南京信息工程大学学报》 CAS 北大核心 2024年第6期846-869,共24页
大规模环境建图时,使用轻便的机器人群去感知环境,采用多机器人协同SLAM(同步定位与地图构建)方案,可以解决在单个机器人SLAM方案下面临的个体成本高昂、全局误差累积、计算量大和风险过于集中的问题,有着极强的鲁棒性与稳定性.本文回... 大规模环境建图时,使用轻便的机器人群去感知环境,采用多机器人协同SLAM(同步定位与地图构建)方案,可以解决在单个机器人SLAM方案下面临的个体成本高昂、全局误差累积、计算量大和风险过于集中的问题,有着极强的鲁棒性与稳定性.本文回顾了多机器人协同SLAM的发展历史,介绍了相关的融合算法与融合架构,并从机器学习分类的角度梳理了现有的协同SLAM算法;同时还介绍了未来多机器人SLAM发展的重要方向:深度学习、语义地图与多机器人VSLAM的结合问题,并对未来发展侙作出了展望. 展开更多
关键词 同时定位与地图构建 视觉SLAM 多机器人SLAM 移动机器人 多源数据融合 语义
在线阅读 下载PDF
基于点线特征的煤矿井下机器人视觉SLAM算法
6
作者 王莉 臧天祥 苏波 《煤炭科学技术》 北大核心 2025年第5期325-337,共13页
煤矿井下视觉同步定位与地图构建SLAM(Simultaneous Localization and Mapping)应用中,光照变化与低纹理场景严重影响特征点的提取和匹配结果,导致位姿估计失败,影响定位精度。提出一种基于改进定向快速旋转二值描述符ORB(Oriented Fast... 煤矿井下视觉同步定位与地图构建SLAM(Simultaneous Localization and Mapping)应用中,光照变化与低纹理场景严重影响特征点的提取和匹配结果,导致位姿估计失败,影响定位精度。提出一种基于改进定向快速旋转二值描述符ORB(Oriented Fast and Rotated Brief)-SLAM3算法的煤矿井下移动机器人双目视觉定位算法SL-SLAM。针对光照变化场景,在前端使用光照稳定性的Super-Point特征点提取网络替换原始ORB特征点提取算法,并提出一种特征点网格限定法,有效剔除无效特征点区域,增加位姿估计稳定性。针对低纹理场景,在前端引入稳定的线段检测器LSD(Line Segment Detector)线特征提取算法,并提出一种点线联合算法,按照特征点网格对线特征进行分组,根据特征点的匹配结果进行线特征匹配,降低线特征匹配复杂度,节约位姿估计时间。构建了点特征和线特征的重投影误差模型,在线特征残差模型中添加角度约束,通过点特征和线特征的位姿增量雅可比矩阵建立点线特征重投影误差统一成本函数。局部建图线程使用ORB-SLAM3经典的局部优化方法调整点、线特征和关键帧位姿,并在后端线程中进行回环修正、子图融合和全局捆绑调整BA(Bundle Adjustment)。在EuRoC数据集上的试验结果表明,SL-SLAM的绝对位姿误差APE(Absolute Pose Error)指标优于其他对比算法,并取得了与真值最接近的轨迹预测结果:均方根误差相较于ORB-SLAM3降低了17.3%。在煤矿井下模拟场景中的试验结果表明,SL-SLAM能适应光照变化和低纹理场景,可以满足煤矿井下移动机器人的定位精度和稳定性要求。 展开更多
关键词 井下机器人 视觉SLAM 双目视觉 SuperPoint特征 LSD线特征
在线阅读 下载PDF
基于特征协同的单目视觉惯性同步定位与地图构建方法
7
作者 王浩 艾克成 张权益 《计算机工程》 北大核心 2025年第8期305-316,共12页
在弱纹理环境中,当前的单目视觉惯性同步定位与地图构建(SLAM)存在视觉退化和误差偏移的问题,导致系统位姿估计精度不高。为解决此问题,提出一种基于特征协同的单目视觉惯性SLAM方法,首先对惯性测量单元(IMU)数据进行预积分并联合视觉... 在弱纹理环境中,当前的单目视觉惯性同步定位与地图构建(SLAM)存在视觉退化和误差偏移的问题,导致系统位姿估计精度不高。为解决此问题,提出一种基于特征协同的单目视觉惯性SLAM方法,首先对惯性测量单元(IMU)数据进行预积分并联合视觉信息进行松耦合的初始化,获取系统的先验信息和尺度信息,再引入线特征提取算法并对提取出的线特征进行优化,以减小计算开销。基于点线特征的位置关系和几何特性,使用特征协同关联算法在点特征和线特征之间建立稳定的关联约束,从而提升点特征跟踪的可靠性。提出一种基于多源信息融合的联合代价函数优化方法,对点特征重投影误差、线特征重投影误差以及IMU残差进行优化以提升位姿估计精度。在EuRoc和TUM VI公共数据集以及真实环境中的实验结果表明,相较于主流的视觉惯性SLAM方法,本文方法的在线特征检测和跟踪耗时平均减少26.5%,位姿估计均方根误差平均降低38.6%和43%,由此验证本文方法在弱纹理环境下具有更高的位姿估计精度。 展开更多
关键词 同步定位与地图构建 视觉惯性 视觉退化 特征协同 多源信息
在线阅读 下载PDF
基于ROS的自主无人机VSLAM研究 被引量:5
8
作者 刘峰 吕强 +1 位作者 郭峰 王国胜 《现代防御技术》 北大核心 2016年第6期61-66,共6页
针对未知复杂环境中无人机无法获得外部辅助情况下自主导航所面临的严峻问题,提出在ROS框架下在板运行单目VSLAM算法的自主无人机方案,仅依靠自身摄像机自主地完成SLAM和导航任务。研究VSLAM算法原理与前沿算法ORB-SLAM,设计并搭建了自... 针对未知复杂环境中无人机无法获得外部辅助情况下自主导航所面临的严峻问题,提出在ROS框架下在板运行单目VSLAM算法的自主无人机方案,仅依靠自身摄像机自主地完成SLAM和导航任务。研究VSLAM算法原理与前沿算法ORB-SLAM,设计并搭建了自主导航无人机平台,针对搭建的无人机平台方案和特点完成视觉定位部分的改进设计。实验表明,自主无人机能够在未知环境中,自主实现同时定位和地图构建任务并完成精确的飞行控制与导航。 展开更多
关键词 视觉同时定位于地图构建 自主无人机 ROS 视觉定位 位姿图优化 自主导航
在线阅读 下载PDF
基于深度学习的室内动态场景下的VSLAM 方法 被引量:11
9
作者 徐晓苏 安仲帅 《中国惯性技术学报》 EI CSCD 北大核心 2020年第4期480-486,共7页
当前应用于室内的视觉同时定位和地图构建算法(VSLAM)主要面向静态的环境,算法的定位精度和稳定性会大大受到环境中运动物体的影响。针对这一问题,提出了一种面向室内的动态场景下的VSLAM方法。在ORB-SLAM2架构上进行改进。在相机捕捉... 当前应用于室内的视觉同时定位和地图构建算法(VSLAM)主要面向静态的环境,算法的定位精度和稳定性会大大受到环境中运动物体的影响。针对这一问题,提出了一种面向室内的动态场景下的VSLAM方法。在ORB-SLAM2架构上进行改进。在相机捕捉图像后,首先利用GCNv2神经网络对图像提取出特征,同时利用轻量级的ESPNetV2神经网络对图像完成语义分割。然后,结合改进的移动一致性检测来确定动态物体,剔除其动态特征获得其静态特征点来完成位姿估计,最终生成含有语义信息的点云地图和八叉树地图。采用TUM数据集验证所提出算法,实验结果表明在高动态场景下绝对轨迹误差的均方根误差平均减少95%,显著提升了在动态场景下的定位精度。 展开更多
关键词 视觉同时定位和地图构建算法 动态场景 深度学习 语义分割 特征提取
在线阅读 下载PDF
一种适用视觉定位的暗光图像增强方法
10
作者 石秋婷 程玉 +2 位作者 陈帅 吴奕雯 陈垚杰 《导航定位学报》 北大核心 2025年第1期106-112,共7页
针对暗光环境下特征丢失影响视觉同步定位与地图构建(SLAM)精度的问题,提出一种深度可分离U型网络(DSCU-net)的图像增强方法:参考编码解码结构与跳跃连接机制,构建逐像素变换曲线估计网络,并引入深度可分离卷积以减少网络参数量;然后在... 针对暗光环境下特征丢失影响视觉同步定位与地图构建(SLAM)精度的问题,提出一种深度可分离U型网络(DSCU-net)的图像增强方法:参考编码解码结构与跳跃连接机制,构建逐像素变换曲线估计网络,并引入深度可分离卷积以减少网络参数量;然后在公开数据集上进行图像增强算法性能测试,并使用开源SLAM算法验证DSCU-net对定位精度的影响。结果表明,该方法能有效提升图像照明度,降低暗光条件下的定位误差,最小误差可降至4.9 cm;综合考虑增强图像质量和计算效率,提出的方法具有优越的暗光增强性能和网络轻量化特点,能有效提高暗光环境下视觉SLAM的定位精度。 展开更多
关键词 暗光 视觉定位 同步定位与地图构建(SLAM) 图像增强 深度可分离卷积 轻量化
在线阅读 下载PDF
室内环境下融合点线特征的双目VI-SLAM方法
11
作者 郭旭 袁杰 +2 位作者 谢霖伟 鲍慧敏 李世钰 《哈尔滨工业大学学报》 北大核心 2025年第8期69-78,104,共11页
为解决室内环境下弱纹理场景中关键点特征稀疏、结构化场景中结构化特征应用不充分以及相机快速移动时关键帧容易跟踪失败的问题,提出了一种基于点线特征融合的双目视觉惯性SLAM方法。首先,基于EDlines线段提取方法,结合高斯图像金字塔... 为解决室内环境下弱纹理场景中关键点特征稀疏、结构化场景中结构化特征应用不充分以及相机快速移动时关键帧容易跟踪失败的问题,提出了一种基于点线特征融合的双目视觉惯性SLAM方法。首先,基于EDlines线段提取方法,结合高斯图像金字塔实现多尺度线段的提取,以增强线段匹配的尺度不变性。同时,对不同尺度下的线段端点的不确定性进行建模,并结合平铺技术对线段的二进制描述符进行分块处理,从而加速线段匹配并提高线特征匹配的鲁棒性与效率。其次,优化惯性传感器的预积分模型,融合双目视觉的点特征重投影误差、线特征重投影误差以及惯性传感器的预积分约束,采用滑动窗口的非线性优化方法进行联合优化,以提高系统位姿估计精度。最后,文中在包含弱纹理、结构化以及相机快速移动等复杂环境的EuRoC数据集上进行实验。结果表明,VI-SLAM方法在EuRoC数据集上的相机轨迹均方根误差为0.031 m,平均误差为0.027 m,拥有更强的鲁棒性和更高的定位精度,尤其在弱纹理和相机快速运动场景中,定位精度优势显著。 展开更多
关键词 同步定位与建图(SLAM) 视觉惯性 点线特征 双目相机 多尺度 非线性优化
在线阅读 下载PDF
面向动态环境的紧耦合视觉惯性SLAM改进算法 被引量:1
12
作者 郭瑞奇 修睿 +1 位作者 孙勇 毛喆 《计算机工程与应用》 北大核心 2025年第4期339-348,共10页
SLAM(simultaneous localization and mapping)是无人载体实现自主导航定位的关键技术。针对传统视觉SLAM系统在动态场景下导航定位精度低的问题,在视觉SLAM系统的基础上引入惯性传感器(inertial measure-ment unit)。在ORB-SLAM3系统... SLAM(simultaneous localization and mapping)是无人载体实现自主导航定位的关键技术。针对传统视觉SLAM系统在动态场景下导航定位精度低的问题,在视觉SLAM系统的基础上引入惯性传感器(inertial measure-ment unit)。在ORB-SLAM3系统的基础上设计了一种面向动态环境的视觉惯性SLAM系统。提出一种基于向量场一致性(vector field consensus,VFC)的稀疏光流法来追踪图像的特征点并计算基础矩阵,分别利用光流对极几何约束和惯性传感器信息计算特征点的动态概率,提出一种联合的动态特征检测方法计算特征点的总动态概率,并将动态概率大于阈值的特征点进行剔除,在SLAM系统的前端实现了视觉信息与惯性运动信息的紧耦合。在数据集上的实验结果表明,该视觉惯性SLAM改进算法有良好的性能表现。 展开更多
关键词 同时定位与地图创建(SLAM) 视觉惯性紧耦合 动态环境 向量场一致性 ORB-SLAM3
在线阅读 下载PDF
改进几何约束的多特征视觉Manhattan-SLAM
13
作者 程鹏 王珂 +2 位作者 邓甘霖 李炎隆 李鹏 《导航定位学报》 北大核心 2025年第2期172-178,共7页
针对视觉跟踪过程中出现的低纹理场景,以及由于运动模糊等因素导致同时定位与建图(SLAM)系统对环境特征的识别和跟踪偏差较大,甚至失效的问题,设计一种点线面多特征融合跟踪方法:改进快速直线检测算法,显化隐藏参数并使其可调整;然后针... 针对视觉跟踪过程中出现的低纹理场景,以及由于运动模糊等因素导致同时定位与建图(SLAM)系统对环境特征的识别和跟踪偏差较大,甚至失效的问题,设计一种点线面多特征融合跟踪方法:改进快速直线检测算法,显化隐藏参数并使其可调整;然后针对短线特征进行筛选与合并,提高系统对环境信息的利用效率;最后在曼哈顿(Manhattan)世界假设中,提出一种结合几何与外观的线特征跟踪策略,利用线特征之间的几何关系建立约束优化匹配与跟踪,提高位姿估计的精度。实验结果表明,改进的特征跟踪方法相较于原算法在跟踪效率和整体定位精度方面都有明显提升,验证了该算法的有效性。 展开更多
关键词 多特征融合 视觉同时定位与建图(SLAM) 曼哈顿(Manhattan)假设 彩色-深度(RGB-D) 位姿估计
在线阅读 下载PDF
基于点线特征与多惯性测量单元融合的SLAM算法
14
作者 张弼泽 潘龙飞 +1 位作者 侯勇胜 樊渊 《计算机应用》 北大核心 2025年第S1期309-316,共8页
在移动机器人和无人驾驶技术中,准确且高效的同时定位与地图构建(SLAM)算法至关重要。针对现有SLAM算法在处理复杂环境和动态场景时面临的精度和鲁棒性不足等问题,提出一种基于点线特征与多惯性测量单元(IMU)融合的SLAM算法。该算法利用... 在移动机器人和无人驾驶技术中,准确且高效的同时定位与地图构建(SLAM)算法至关重要。针对现有SLAM算法在处理复杂环境和动态场景时面临的精度和鲁棒性不足等问题,提出一种基于点线特征与多惯性测量单元(IMU)融合的SLAM算法。该算法利用多IMU融合技术从环境中提取点和线特征,这些几何特征能提供丰富的环境信息,有助于构建更详细和准确的地图。在点线特征提取过程中,采用基于优化的特征匹配算法确保特征提取的准确性和稳定性。此外,通过多IMU融合技术增强系统的运动估计能力。多IMU融合不仅能提高单一IMU在高动态环境下的鲁棒性,还能通过优化的传感器数据融合算法提供更精确的位姿估计。实验在多种典型的室内和室外环境(包括静态和动态场景)中进行。与传统算法相比,所提算法在复杂环境中的表现更优越,能有效应对环境中的变化和噪声干扰,在定位精度、建图质量以及实时性方面均有明显提升。 展开更多
关键词 同时定位与建图 点线特征 多惯性测量单元融合 自主导航 图优化 传感器融合 激光雷达 视觉传感器
在线阅读 下载PDF
SLAM中视觉和激光信息的融合应用
15
作者 曾瑞琪 纪新春 +2 位作者 魏东岩 巨柳荫 赵航 《导航定位学报》 北大核心 2025年第3期116-129,共14页
为了进一步提升同步定位与建图(SLAM)技术的性能,研究分析SLAM中视觉和激光信息的融合应用:指出SLAM技术广泛应用于自动驾驶、智能机器人等移动平台的自主导航定位过程,视觉相机和激光雷达(LiDAR)作为最常用的感知传感器,各有优劣,融合... 为了进一步提升同步定位与建图(SLAM)技术的性能,研究分析SLAM中视觉和激光信息的融合应用:指出SLAM技术广泛应用于自动驾驶、智能机器人等移动平台的自主导航定位过程,视觉相机和激光雷达(LiDAR)作为最常用的感知传感器,各有优劣,融合二者数据能增强SLAM系统的鲁棒性和准确性;然后在分析视觉和激光信息融合需求的基础上,结合SLAM工作流程,重点从里程计、回环检测及地图构建3个关键环节探讨视觉和激光信息融合方法;最后分析SLAM中将图像与点云融合所面临的挑战,并对未来的技术发展方向进行展望。 展开更多
关键词 同步定位与建图(SLAM) 视觉相机 激光雷达(LiDAR) 数据融合 里程计 回环检测 建图
在线阅读 下载PDF
基于关键平面的异质特征融合视觉惯性SLAM系统
16
作者 沈晔湖 何一凡 +1 位作者 魏季坤 张大庆 《光学精密工程》 北大核心 2025年第8期1259-1273,共15页
平面特征作为一种高层几何特征而广泛存在于结构化环境中,对于大多数同时定位与地图构建(Simultaneous Localization and Mapping,SLAM)系统来说是个很好的补充。为了解决特征点与平面特征融合时引入了新的误差并且平面存在着退化的可能... 平面特征作为一种高层几何特征而广泛存在于结构化环境中,对于大多数同时定位与地图构建(Simultaneous Localization and Mapping,SLAM)系统来说是个很好的补充。为了解决特征点与平面特征融合时引入了新的误差并且平面存在着退化的可能,本文提出了一个融合异质特征的单目视觉惯性SLAM系统。首先从灰度图像中提取特征点;其次对特征点集合进行三角剖分,并将三角剖分的结果转换到世界坐标系下;接着将初始化过程建模为有约束的优化问题,并用交替方向乘子法分布式求解;然后对相似平面进行聚类,并用所提出的平面碰撞概率模型拟合平面,得到对应的有界平面参数;最后在因子图中引入了平面特征的几何约束,通过误差模型同时优化相机运动以及平面参数。与典型的视觉惯性SLAM系统VINS相比,本文提出的系统在EuRoC数据集的绝对轨迹误差平均值降低了50%;在TUM-Ⅵ数据集的绝对轨迹误差平均值降低了40%。该方法能够在结构化场景中稳定、连续地工作,并且提高了弱纹理区域的定位精度和鲁棒性。 展开更多
关键词 SLAM 视觉惯性 分布式求解 有界平面提取 非线性优化
在线阅读 下载PDF
vSLAM在无人机平台上的发展研究综述 被引量:5
17
作者 王冠政 汪海洋 +3 位作者 程志伟 万紫嫣 文雪 何建华 《计算机工程与应用》 CSCD 北大核心 2019年第14期8-14,共7页
vSLAM(visual Simultaneous Localization and Mapping)是一种基于视觉传感器实现同时定位与建图的技术,不仅可为地面机器人提供服务,同时在无人机的定位导航中也有着非常重要的应用。对基于无人机的vSLAM发展概况进行整理研究,就其中... vSLAM(visual Simultaneous Localization and Mapping)是一种基于视觉传感器实现同时定位与建图的技术,不仅可为地面机器人提供服务,同时在无人机的定位导航中也有着非常重要的应用。对基于无人机的vSLAM发展概况进行整理研究,就其中几大关键方向的研究现状予以介绍,主要包括结合IMU、结合光流传感器的vSLAM,同时总结目前研究中仍存在的一些问题和不足之处。结合经典理论与最新研究动态,对基于无人机的vSLAM重点研究内容和未来发展方向提出了新的展望。 展开更多
关键词 基于视觉的同时定位与建图技术(vslam) 无人机 传感器融合
在线阅读 下载PDF
一种自适应特征地图匹配的改进VSLAM算法 被引量:13
18
作者 张峻宁 苏群星 +2 位作者 刘鹏远 朱庆 张凯 《自动化学报》 EI CSCD 北大核心 2019年第3期553-565,共13页
从提高机器人视觉同时定位与地图构建(Visual simultaneous localization and mapping, VSLAM)算法的实时性出发,在VSLAM的视觉里程计中提出一种自适应特征地图配准的算法.首先,针对视觉里程计中特征地图信息冗余、耗费计算资源的问题,... 从提高机器人视觉同时定位与地图构建(Visual simultaneous localization and mapping, VSLAM)算法的实时性出发,在VSLAM的视觉里程计中提出一种自适应特征地图配准的算法.首先,针对视觉里程计中特征地图信息冗余、耗费计算资源的问题,划分特征地图子区域并作为结构单元,再根据角点响应强度指标大小提取子区域中少数高效的特征点,以较小规模的特征地图配准各帧:针对自适应地图配准时匹配个数不满足的情况,提出一种区域特征点补充和特征地图扩建的方法,快速实现该情形下当前帧的再次匹配:为了提高视觉里程计中位姿估计的精度,提出一种帧到帧、帧到模型的g2o (General graph optimization)特征地图优化模型,更加有效地更新特征地图的内点和外点.通用数据集的实验表明,所提方法的定位精度误差在厘米级,生成的点云地图清晰、漂移少,相比于其他算法,具有更好的实时性、定位精度以及建图能力. 展开更多
关键词 同时定位与地图构建 视觉里程计 角点响应 区域特征补充 地图扩建 g2o
在线阅读 下载PDF
Visual attention and clustering-based automatic selection of landmarks using single camera 被引量:1
19
作者 CHUHO Yi YONGMIN Shin JUNGWON Cho 《Journal of Central South University》 SCIE EI CAS 2014年第9期3525-3533,共9页
An improved method with better selection capability using a single camera was presented in comparison with previous method. To improve performance, two methods were applied to landmark selection in an unfamiliar indoo... An improved method with better selection capability using a single camera was presented in comparison with previous method. To improve performance, two methods were applied to landmark selection in an unfamiliar indoor environment. First, a modified visual attention method was proposed to automatically select a candidate region as a more useful landmark. In visual attention, candidate landmark regions were selected with different characteristics of ambient color and intensity in the image. Then, the more useful landmarks were selected by combining the candidate regions using clustering. As generally implemented, automatic landmark selection by vision-based simultaneous localization and mapping(SLAM) results in many useless landmarks, because the features of images are distinguished from the surrounding environment but detected repeatedly. These useless landmarks create a serious problem for the SLAM system because they complicate data association. To address this, a method was proposed in which the robot initially collected landmarks through automatic detection while traversing the entire area where the robot performed SLAM, and then, the robot selected only those landmarks that exhibited high rarity through clustering, which enhanced the system performance. Experimental results show that this method of automatic landmark selection results in selection of a high-rarity landmark. The average error of the performance of SLAM decreases 52% compared with conventional methods and the accuracy of data associations increases. 展开更多
关键词 simultaneous localization and mapping automatic landmark selection visual attention CLUSTERING
在线阅读 下载PDF
室内动态场景下基于深度相机的VSLAM方法 被引量:3
20
作者 陈志环 王祖傲 李想成 《中国惯性技术学报》 EI CSCD 北大核心 2023年第4期390-400,共11页
针对室内动态场景下的视觉同步定位与地图构建(VSLAM)问题,提出了一种基于YOLACT实例分割融合光流约束的视觉同步定位与地图构建方法,以降低运动物体对VSLAM系统性能影响。该系统通过自适应阈值的方法提取到均匀分布的ORB特征点,然后利... 针对室内动态场景下的视觉同步定位与地图构建(VSLAM)问题,提出了一种基于YOLACT实例分割融合光流约束的视觉同步定位与地图构建方法,以降低运动物体对VSLAM系统性能影响。该系统通过自适应阈值的方法提取到均匀分布的ORB特征点,然后利用YOLACT实例分割网络获取动态对象的掩膜,同时使用改进的光流约束对动态点进行检测。将动态点与动态对象掩膜进行匹配之后可以删除动态物体的特征点,之后使用剩余的静态特征点完成相机的位姿估计。最后使用静态区域的图像信息生成点云图,并通过滤波器对点云图进一步优化,同时引用八叉树存储点云,建立八叉树地图。在TUM数据集室内动态场景和真实室内动态场景下进行测试,相较于ORB-SLAM3算法,所提VSLAM算法在低动态场景中的定位精度有10%以上的提升,在高动态场景中对比DS-SLAM算法,也有5%左右的定位精度提升,验证了所提方法在室内动态场景下的可行性和有效性。 展开更多
关键词 视觉同步定位与地图构建 动态场景 实例分割 动态特征点过滤 稠密地图
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部