期刊文献+
共找到111篇文章
< 1 2 6 >
每页显示 20 50 100
Research on simultaneous localization and mapping for AUV by an improved method:Variance reduction FastSLAM with simulated annealing 被引量:5
1
作者 Jiashan Cui Dongzhu Feng +1 位作者 Yunhui Li Qichen Tian 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期651-661,共11页
At present,simultaneous localization and mapping(SLAM) for an autonomous underwater vehicle(AUV)is a research hotspot.Aiming at the problem of non-linear model and non-Gaussian noise in AUV motion,an improved method o... At present,simultaneous localization and mapping(SLAM) for an autonomous underwater vehicle(AUV)is a research hotspot.Aiming at the problem of non-linear model and non-Gaussian noise in AUV motion,an improved method of variance reduction fast simultaneous localization and mapping(FastSLAM) with simulated annealing is proposed to solve the problems of particle degradation,particle depletion and particle loss in traditional FastSLAM,which lead to the reduction of AUV location estimation accuracy.The adaptive exponential fading factor is generated by the anneal function of simulated annealing algorithm to improve the effective particle number and replace resampling.By increasing the weight of small particles and decreasing the weight of large particles,the variance of particle weight can be reduced,the number of effective particles can be increased,and the accuracy of AUV location and feature location estimation can be improved to some extent by retaining more information carried by particles.The experimental results based on trial data show that the proposed simulated annealing variance reduction FastSLAM method avoids particle degradation,maintains the diversity of particles,weakened the degeneracy and improves the accuracy and stability of AUV navigation and localization system. 展开更多
关键词 Autonomous underwater vehicle(AUV) SONAR simultaneous localization and mapping(slam) Simulated annealing FASTslam
在线阅读 下载PDF
Rapid State Augmentation for Compressed EKF-Based Simultaneous Localization and Mapping 被引量:1
2
作者 窦丽华 张海强 +1 位作者 陈杰 方浩 《Journal of Beijing Institute of Technology》 EI CAS 2009年第2期192-197,共6页
A new method for speeding up the state augment operations involved in the compressed extended Kalman filter-based simultaneous localization and mapping (CEKF-SLAM) algorithm was proposed. State augment usually requi... A new method for speeding up the state augment operations involved in the compressed extended Kalman filter-based simultaneous localization and mapping (CEKF-SLAM) algorithm was proposed. State augment usually requires a fully-updated state eovariance so as to append the information of newly observed landmarks, thus computational volume increases quadratically with the number of landmarks in the whole map. It was proved that state augment can also be achieved by augmenting just one auxiliary coefficient ma- trix. This method can yield identical estimation results as those using EKF-SLAM algorithm, and computa- tional amount grows only linearly with number of increased landmarks in the local map. The efficiency of this quick state augment for CEKF-SLAM algorithm has been validated by a sophisticated simulation project. 展开更多
关键词 simultaneous localization and mapping slam extended Kalman filter state augment compu- tational volume
在线阅读 下载PDF
Simultaneous Localization and Mapping System Based on Labels 被引量:1
3
作者 Tong Liu Panpan Liu +1 位作者 Songtian Shang Yi Yang 《Journal of Beijing Institute of Technology》 EI CAS 2017年第4期534-541,共8页
In this paper a label-based simultaneous localization and mapping( SLAM) system is proposed to provide localization to indoor autonomous robots. In the system quick response( QR) codes encoded with serial numbers ... In this paper a label-based simultaneous localization and mapping( SLAM) system is proposed to provide localization to indoor autonomous robots. In the system quick response( QR) codes encoded with serial numbers are utilized as labels. These labels are captured by two webcams,then the distances and angles between the labels and webcams are computed. Motion estimated from the two rear wheel encoders is adjusted by observing QR codes. Our system uses the extended Kalman filter( EKF) for the back-end state estimation. The number of deployed labels controls the state estimation dimension. The label-based EKF-SLAM system eliminates complicated processes,such as data association and loop closure detection in traditional feature-based visual SLAM systems. Our experiments include software-simulation and robot-platform test in a real environment. Results demonstrate that the system has the capability of correcting accumulated errors of dead reckoning and therefore has the advantage of superior precision. 展开更多
关键词 simultaneous localization and mapping slam extended Kalman filter (EKF) quick response (QR) codes artificial landmarks
在线阅读 下载PDF
Underwater Simultaneous Localization and Mapping Based on Forward-looking Sonar 被引量:1
4
作者 Tiedong Zhang Wenjing Zeng Lei Wan 《Journal of Marine Science and Application》 2011年第3期371-376,共6页
A method of underwater simultaneous localization and mapping (SLAM) based on forward-looking sonar was proposed in this paper. Positions of objects were obtained by the forward-looking sonar, and an improved associa... A method of underwater simultaneous localization and mapping (SLAM) based on forward-looking sonar was proposed in this paper. Positions of objects were obtained by the forward-looking sonar, and an improved association method based on an ant colony algorithm was introduced to estimate the positions. In order to improve the precision of the positions, the extended Kalman filter (EKF) was adopted. The presented algorithm was tested in a tank, and the maximum estimation error of SLAM gained was 0.25 m. The tests verify that this method can maintain better association efficiency and reduce navigatioJ~ error. 展开更多
关键词 simultaneous localization and mapping slam looking forward sonar extended Kalman filter (EKF)
在线阅读 下载PDF
Review of Simultaneous Localization and Mapping Technology in the Agricultural Environment
5
作者 Yaoguang Wei Bingqian Zhou +3 位作者 Jialong Zhang Ling Sun Dong An Jincun Liu 《Journal of Beijing Institute of Technology》 EI CAS 2023年第3期257-274,共18页
Simultaneous localization and mapping(SLAM)is one of the most attractive research hotspots in the field of robotics,and it is also a prerequisite for the autonomous navigation of robots.It can significantly improve th... Simultaneous localization and mapping(SLAM)is one of the most attractive research hotspots in the field of robotics,and it is also a prerequisite for the autonomous navigation of robots.It can significantly improve the autonomous navigation ability of mobile robots and their adaptability to different application environments and contribute to the realization of real-time obstacle avoidance and dynamic path planning.Moreover,the application of SLAM technology has expanded from industrial production,intelligent transportation,special operations and other fields to agricultural environments,such as autonomous navigation,independent weeding,three-dimen-sional(3D)mapping,and independent harvesting.This paper mainly introduces the principle,sys-tem framework,latest development and application of SLAM technology,especially in agricultural environments.Firstly,the system framework and theory of the SLAM algorithm are introduced,and the SLAM algorithm is described in detail according to different sensor types.Then,the devel-opment and application of SLAM in the agricultural environment are summarized from two aspects:environment map construction,and localization and navigation of agricultural robots.Finally,the challenges and future research directions of SLAM in the agricultural environment are discussed. 展开更多
关键词 simultaneous localization and mapping(slam) agricultural environment agricultural robots environment map construction localization and navigation
在线阅读 下载PDF
基于改进YOLOv5s的动态视觉SLAM算法
6
作者 蒋畅江 刘朋 舒鹏 《北京航空航天大学学报》 北大核心 2025年第3期763-771,共9页
针对室内动态场景中存在的动态目标会降低同步定位与地图构建(SLAM)系统的鲁棒性和相机定位精度问题,提出了一种基于目标检测网络的动态视觉SLAM算法。选择YOLOv5系列中深度和特征图宽度最小的YOLOv5s作为目标检测网络,并将其主干网络... 针对室内动态场景中存在的动态目标会降低同步定位与地图构建(SLAM)系统的鲁棒性和相机定位精度问题,提出了一种基于目标检测网络的动态视觉SLAM算法。选择YOLOv5系列中深度和特征图宽度最小的YOLOv5s作为目标检测网络,并将其主干网络替换为PPLCNet轻量级网络,在VOC2007+VOC2012数据集训练后,由实验结果可知,PP-LCNet-YOLOv5s模型较YOLOv5s模型网络参数量减少了41.89%,运行速度加快了39.13%。在视觉SLAM系统的跟踪线程中引入由改进的目标检测网络和稀疏光流法结合的并行线程,用于剔除动态特征点,仅利用静态特征点进行特征匹配和相机位姿估计。实验结果表明,所提算法在动态场景下的相机定位精度较ORB-SLAM3提升了92.38%。 展开更多
关键词 同步定位与地图构建 目标检测 动态特征点剔除 定位精度 光流法
在线阅读 下载PDF
Localization and mapping in urban area based on 3D point cloud of autonomous vehicles 被引量:2
7
作者 王美玲 李玉 +2 位作者 杨毅 朱昊 刘彤 《Journal of Beijing Institute of Technology》 EI CAS 2016年第4期473-482,共10页
In order to meet the application requirements of autonomous vehicles, this paper proposes a simultaneous localization and mapping (SLAM) algorithm, which uses a VoxelGrid filter to down sample the point cloud data, ... In order to meet the application requirements of autonomous vehicles, this paper proposes a simultaneous localization and mapping (SLAM) algorithm, which uses a VoxelGrid filter to down sample the point cloud data, with the combination of iterative closest points (ICP) algorithm and Gaussian model for particles updating, the matching between the local map and the global map to quantify particles' importance weight. The crude estimation by using ICP algorithm can find the high probability area of autonomous vehicles' poses, which would decrease particle numbers, increase algorithm speed and restrain particles' impoverishment. The calculation of particles' importance weight based on matching of attribute between grid maps is simple and practicable. Experiments carried out with the autonomous vehicle platform validate the effectiveness of our approaches. 展开更多
关键词 simultaneous localization and mapping slam Rao-Blackwellized particle filter RB-PF) VoxelGrid filter ICP algorithm Gaussian model urban area
在线阅读 下载PDF
Semi-Direct Visual Odometry and Mapping System with RGB-D Camera
8
作者 Xinliang Zhong Xiao Luo +1 位作者 Jiaheng Zhao Yutong Huang 《Journal of Beijing Institute of Technology》 EI CAS 2019年第1期83-93,共11页
In this paper a semi-direct visual odometry and mapping system is proposed with a RGB-D camera,which combines the merits of both feature based and direct based methods.The presented system directly estimates the camer... In this paper a semi-direct visual odometry and mapping system is proposed with a RGB-D camera,which combines the merits of both feature based and direct based methods.The presented system directly estimates the camera motion of two consecutive RGB-D frames by minimizing the photometric error.To permit outliers and noise,a robust sensor model built upon the t-distribution and an error function mixing depth and photometric errors are used to enhance the accuracy and robustness.Local graph optimization based on key frames is used to reduce the accumulative error and refine the local map.The loop closure detection method,which combines the appearance similarity method and spatial location constraints method,increases the speed of detection.Experimental results demonstrate that the proposed approach achieves higher accuracy on the motion estimation and environment reconstruction compared to the other state-of-the-art methods. Moreover,the proposed approach works in real-time on a laptop without a GPU,which makes it attractive for robots equipped with limited computational resources. 展开更多
关键词 RGB-D simultaneous localization and mapping(slam) visual ODOMETRY localization 3D mapping LOOP CLOSURE detection
在线阅读 下载PDF
基于深度学习的移动机器人语义SLAM方法研究 被引量:5
9
作者 王立鹏 张佳鹏 +2 位作者 张智 王学武 齐尧 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第2期306-313,共8页
为了给移动机器人提供细节丰富的三维语义地图,支撑机器人的精准定位,本文提出一种结合RGB-D信息与深度学习结果的机器人语义同步定位与建图方法。改进了ORB-SLAM2算法的框架,提出一种可以构建稠密点云地图的视觉同步定位与建图系统;将... 为了给移动机器人提供细节丰富的三维语义地图,支撑机器人的精准定位,本文提出一种结合RGB-D信息与深度学习结果的机器人语义同步定位与建图方法。改进了ORB-SLAM2算法的框架,提出一种可以构建稠密点云地图的视觉同步定位与建图系统;将深度学习的目标检测算法YOLO v5与视觉同步定位与建图系统融合,反映射为三维点云语义标签,结合点云分割完成数据关联和物体模型更新,并用八叉树的地图形式存储地图信息;基于移动机器人平台,在实验室环境下开展移动机器人三维语义同步定位与建图实验,实验结果验证了本文语义同步定位与建图算法的语义信息映射、点云分割与语义信息匹配以及三维语义地图构建的有效性。 展开更多
关键词 移动机器人 深度学习 视觉同步定位与建图 目标识别 点云分割 数据关联 八叉树 语义地图
在线阅读 下载PDF
多传感器融合SLAM研究综述 被引量:5
10
作者 高强 陆科帆 +3 位作者 吉月辉 刘俊杰 许亮 魏光睿 《现代雷达》 CSCD 北大核心 2024年第8期29-39,共11页
如今,移动机器人技术的发展使得同步定位与建图(SLAM)技术越来越受到学者的关注。在未知环境下,使移动机器人能够自主完成建图或者探索,是SLAM最基本的要求。在过去的十年,单传感器为机器人的建图和探索提供了良好的效果,而多传感器融合... 如今,移动机器人技术的发展使得同步定位与建图(SLAM)技术越来越受到学者的关注。在未知环境下,使移动机器人能够自主完成建图或者探索,是SLAM最基本的要求。在过去的十年,单传感器为机器人的建图和探索提供了良好的效果,而多传感器融合SLAM则以其强鲁棒、高精度的技术特性,为提升移动机器人建图的精度和速度提供了更高的可能性,成为了SLAM发展的主要研究方向。文中总结了现今多传感器融合SLAM的方案,首先对单传感器方案进行了比较;然后对多传感器融合技术的方案进行了对比;最后,分析了多传感器融合SLAM的难点与解决方案,并对多传感器融合SLAM的未来与发展进行了探讨。 展开更多
关键词 移动机器人 单传感器 多传感器融合 同步定位与建图
在线阅读 下载PDF
视觉SLAM方法综述 被引量:8
11
作者 王朋 郝伟龙 +2 位作者 倪翠 张广渊 巩慧 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第2期359-367,共9页
实时定位与建图(SLAM)技术搭载特定传感器,使移动机器人在无任何环境先验条件下,在运动过程中自主建立环境模型来计算自身位姿,大幅提高其自主导航能力,以及对不同应用环境的适应性。视觉SLAM方法以相机作为外部传感器,通过采集周围环... 实时定位与建图(SLAM)技术搭载特定传感器,使移动机器人在无任何环境先验条件下,在运动过程中自主建立环境模型来计算自身位姿,大幅提高其自主导航能力,以及对不同应用环境的适应性。视觉SLAM方法以相机作为外部传感器,通过采集周围环境信息来创建地图并实时估计机器人自身位姿。为此,介绍了具有代表性的经典视觉SLAM方法及与深度学习相结合的视觉SLAM方法,分析了视觉SLAM方法中采用的不同特征检测方法、后端优化、闭环检测,以及动态环境下视觉SLAM方法的应用,总结了视觉SLAM方法的问题,并探讨了视觉SLAM方法在未来的热点研究方向和发展前景。 展开更多
关键词 视觉实时定位与建图 深度学习 特征检测 位姿估计 闭环检测
在线阅读 下载PDF
动态场景下基于实例分割与光流的语义SLAM建图 被引量:1
12
作者 张禹 高新 《微电子学与计算机》 2024年第2期19-27,共9页
视觉同步定位与建图技术常用于室内智能机器人的导航,但是其位姿是以静态环境为前提进行估计的。为了提升视觉即时定位与建图(Simultaneous Localization And Mapping,SLAM)在动态场景中的定位与建图的鲁棒性和实时性,在原ORB-SLAM2基... 视觉同步定位与建图技术常用于室内智能机器人的导航,但是其位姿是以静态环境为前提进行估计的。为了提升视觉即时定位与建图(Simultaneous Localization And Mapping,SLAM)在动态场景中的定位与建图的鲁棒性和实时性,在原ORB-SLAM2基础上新增动态区域检测线程和语义点云线程。动态区域检测线程由实例分割网络和光流估计网络组成,实例分割赋予动态场景语义信息的同时生成先验性动态物体的掩膜。为了解决实例分割网络的欠分割问题,采用轻量级光流估计网络辅助检测动态区域,生成准确性更高的动态区域掩膜。将生成的动态区域掩膜传入到跟踪线程中进行实时剔除动态区域特征点,然后使用地图中剩余的静态特征点进行相机的位姿估计并建立语义点云地图。在公开TUM数据集上的实验结果表明,改进后的SLAM系统在保证实时性的前提下,提升了其在动态场景中的定位与建图的鲁棒性。 展开更多
关键词 即时定位与建图 动态场景 实例分割 光流估计
在线阅读 下载PDF
煤矿井下移动机器人多传感器自适应融合SLAM方法 被引量:4
13
作者 马艾强 姚顽强 《工矿自动化》 CSCD 北大核心 2024年第5期107-117,共11页
基于同时定位与建图(SLAM)技术的移动机器人能够快速、准确、自动化地采集空间数据,进行空间智能感知和环境地图构建,是实现煤矿智能化和无人化的关键。针对目前煤矿井下多传感器融合SLAM方法存在机器人前端位姿估计退化失效和后端融合... 基于同时定位与建图(SLAM)技术的移动机器人能够快速、准确、自动化地采集空间数据,进行空间智能感知和环境地图构建,是实现煤矿智能化和无人化的关键。针对目前煤矿井下多传感器融合SLAM方法存在机器人前端位姿估计退化失效和后端融合精度不足的问题,提出了一种煤矿井下移动机器人激光雷达(LiDAR)−视觉−惯性(IMU)自适应融合SLAM方法。对LiDAR点云数据进行聚类分割,提取线面特征,利用IMU预积分状态进行畸变校正,采用基于自适应Gamma校正和对比度受限的自适应直方图均衡化(CLAHE)的图像增强算法处理低照度图像,再提取视觉点线特征。用IMU预积分状态为LiDAR特征匹配与视觉特征跟踪提供位姿初始值。根据LiDAR相邻帧的线面特征匹配得到移动机器人位姿,之后进行视觉点线特征跟踪,分别计算LiDAR、视觉、IMU位姿变化值,通过设定动态阈值来检测前端里程计的稳定性,自适应选取最优位姿。对不同传感器构建残差项,包括点云匹配残差、IMU预积分残差、视觉点线残差、边缘化残差。为了兼顾精度与实时性,基于滑动窗口实现激光点云特征、视觉特征、IMU测量的多源数据联合非线性优化,实现煤矿井下连续可用、精确可靠的SLAM。对图像增强前后效果进行试验验证,结果表明,基于自适应Gamma校正和CLAHE的图像增强算法能显著提升背光区和光照区的亮度和对比度,增加图像中的特征信息,大幅提升特征点提取数量和匹配质量,匹配成功率达90.7%。为验证所提方法的性能,在狭长走廊和煤矿巷道场景下进行试验验证,结果表明,所提方法在狭长走廊场景的定位均方根误差为0.15 m,构建的点云地图一致性较高;在煤矿巷道场景中的定位均方根误差为0.19 m,构建的点云地图可真实地反映煤矿井下环境。 展开更多
关键词 煤矿井下移动机器人 同时定位与建图 激光雷达−视觉−惯性自适应融合 图像增强 位姿估计 多传感器数据融合 滑动窗口紧耦合优化 slam
在线阅读 下载PDF
SLAM技术及其在矿山无人驾驶领域的研究现状与发展趋势
14
作者 崔邵云 鲍久圣 +5 位作者 胡德平 袁晓明 张可琨 阴妍 王茂森 朱晨钟 《工矿自动化》 CSCD 北大核心 2024年第10期38-52,共15页
无人驾驶是矿山智能化关键技术之一,其中即时定位与地图构建(SLAM)技术是实现无人驾驶的关键环节。为推动SLAM技术在矿山无人驾驶领域的发展,对SLAM技术原理、成熟地面SLAM方案、现阶段矿山SLAM研究现状、未来矿山SLAM发展趋势进行了探... 无人驾驶是矿山智能化关键技术之一,其中即时定位与地图构建(SLAM)技术是实现无人驾驶的关键环节。为推动SLAM技术在矿山无人驾驶领域的发展,对SLAM技术原理、成熟地面SLAM方案、现阶段矿山SLAM研究现状、未来矿山SLAM发展趋势进行了探讨。根据SLAM技术所使用的传感器,从视觉、激光及多传感器融合3个方面分析了各自的技术原理及相应框架,指出视觉和激光SLAM技术通过单一相机或激光雷达实现,存在易受环境干扰、无法适应复杂环境等缺点,多传感器融合SLAM是目前最佳的解决方法。探究了目前矿山SLAM技术的研究现状,分析了视觉、激光、多传感器融合3种SLAM技术在井工煤矿、露天矿山的适用性与研究价值,指出多传感器融合SLAM是井工煤矿领域的最佳方案,SLAM技术在露天矿山领域研究价值不高。基于现阶段井下SLAM技术存在的难点(随时间及活动范围积累误差、各类场景引起的不良影响、各类传感器无法满足高精度SLAM算法的硬件要求),提出矿山无人驾驶领域SLAM技术未来应向多传感器融合、固态化、智能化方向发展。 展开更多
关键词 矿山智能化 无人驾驶 即时定位与地图构建 多传感器融合slam 视觉slam 激光雷达slam
在线阅读 下载PDF
SLAM技术在矿井智能化的研究现状与应用进展
15
作者 徐中华 张鑫 +2 位作者 付信凯 崔智翔 江松 《安徽工业大学学报(自然科学版)》 CAS 2024年第3期294-304,共11页
智能采矿是矿井生产发展过程中的重要阶段,直接影响矿产企业的安全生产、矿产产量、经济效益和社会效益,随着矿井智能化水平的提高和相应政策的颁布,特别是我国智慧矿山和智能感知设备的快速发展和普及,矿井智能化地图构建和定位导航技... 智能采矿是矿井生产发展过程中的重要阶段,直接影响矿产企业的安全生产、矿产产量、经济效益和社会效益,随着矿井智能化水平的提高和相应政策的颁布,特别是我国智慧矿山和智能感知设备的快速发展和普及,矿井智能化地图构建和定位导航技术已成为重要的研究课题。回顾传统矿井地图绘制和定位技术的发展历程,结合矿井环境特点分析传统技术面临的挑战。介绍同步定位与建图(SLAM)技术在矿井智能化应用方面的优势,综述SLAM技术在非结构化复杂矿井工作环境下数字地图构建及无网络井下人、机/车定位导航的研究现状与应用进展。最后,对未来SLAM技术在矿井智能化领域中的发展趋势进行展望,即融合深度学习、三维重建与可视化、5G与云计算等。 展开更多
关键词 同步定位与建图(slam) 矿井智能化 智慧矿山 采矿工程
在线阅读 下载PDF
面向矿井无人驾驶的IMU与激光雷达融合SLAM技术
16
作者 胡青松 李敬雯 +2 位作者 张元生 李世银 孙彦景 《工矿自动化》 CSCD 北大核心 2024年第10期21-28,共8页
同时定位与地图构建(SLAM)是无人驾驶关键技术,现有SLAM技术在煤矿巷道环境下存在累计误差大、漂移等问题。提出一种巷道环境特征辅助的惯性测量单元(IMU)与激光雷达融合SLAM算法。利用IMU观测数据预测点云运动状态并进行运动补偿,减少... 同时定位与地图构建(SLAM)是无人驾驶关键技术,现有SLAM技术在煤矿巷道环境下存在累计误差大、漂移等问题。提出一种巷道环境特征辅助的惯性测量单元(IMU)与激光雷达融合SLAM算法。利用IMU观测数据预测点云运动状态并进行运动补偿,减少由设备运动引起的点云畸变;通过点云配准得到雷达里程计位姿变换信息,构成雷达里程计约束;提取巷道侧壁和地面点云并进行平面拟合,构成环境约束;基于IMU预积分约束、雷达里程计约束和环境约束,采用因子图优化方法完成激光雷达与IMU紧耦合,实现对巷道三维场景的高精度重建和无人驾驶车辆定位。仿真实验表明,巷道环境特征辅助的IMU与激光雷达融合SLAM算法的绝对轨迹均方根误差为0.1162 m,相对轨迹均方根误差为0.0409 m,定位精度较常用的LeGO-LOAM算法和LIO-SAM算法有所提升。真实环境测试结果表明,该算法具有良好的建图效果,未出现漂移和拖尾现象,具有较强的环境适应性和鲁棒性。 展开更多
关键词 无人驾驶 同时定位与地图构建 slam 激光雷达 惯性测量单元 环境信息辅助 因子图优化
在线阅读 下载PDF
一种基于轻量化卷积模块的语义分割网络
17
作者 连晓峰 康毛毛 +1 位作者 谭励 王艳莉 《应用科学学报》 北大核心 2025年第1期66-79,共14页
融合深度学习的语义同步定位与地图构建技术为处理动态场景提供了有效的解决方案,但仍面临计算资源消耗大和模型复杂度高的挑战。为此,提出了一种基于BlendMask改进的轻量化语义分割网络。首先,设计了一种轻量的GDS-ECA卷积(Ghost-depth... 融合深度学习的语义同步定位与地图构建技术为处理动态场景提供了有效的解决方案,但仍面临计算资源消耗大和模型复杂度高的挑战。为此,提出了一种基于BlendMask改进的轻量化语义分割网络。首先,设计了一种轻量的GDS-ECA卷积(Ghost-depthwise separable convolution with efficient channel attention)模块,利用深度可分离卷积替代Ghost卷积中的少量卷积操作,减少参数量和计算量,并添加注意力机制提升特征表达能力。其次,提出了特征提取网络BGTNet(bottleneck GDS-ECA attention transformer network),将GDS-ECA卷积应用于颈部模块的卷积层以提升网络的提取精度;此外,将特征金字塔网络(feature pyramid network,FPN)中的传统卷积替换为GDS-ECA卷积,构建轻量化特征金字塔网络,并结合BGTNet形成语义分割网络的主干网。最后在数据集COCO上进行了实验验证,改进后的模型处理图像时间缩短了7.3 ms,平均精度提升了1.5%。 展开更多
关键词 语义分割 同步定位与地图构建 轻量化 注意力机制 特征金字塔
在线阅读 下载PDF
大规模环境下基于激光雷达的机器人SLAM算法 被引量:22
18
作者 武二永 项志宇 +1 位作者 沈敏一 刘济林 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2007年第12期1982-1986,共5页
为解决大规模环境下机器人的同时定位和地图构建(SLAM)问题,提出一种基于Rao-Blackwellised粒子滤波器的SLAM算法.通过选取稳定且易于区别的特征点,发展了一种基于全局约束的数据关联方法,有效地减少了误匹配的概率;采用改进的粒子分布... 为解决大规模环境下机器人的同时定位和地图构建(SLAM)问题,提出一种基于Rao-Blackwellised粒子滤波器的SLAM算法.通过选取稳定且易于区别的特征点,发展了一种基于全局约束的数据关联方法,有效地减少了误匹配的概率;采用改进的粒子分布预测函数,提高了粒子滤波器的性能.实验结果表明,该算法具有较低的计算复杂度,精度也比较高,能够有效地解决大规模环境下的机器人SLAM问题. 展开更多
关键词 机器人 slam 同时定位 地图构建 粒子滤波器 数据关联
在线阅读 下载PDF
室内环境下基于图优化的视觉惯性SLAM方法 被引量:17
19
作者 徐晓苏 代维 +2 位作者 杨博 李瑶 董亚 《中国惯性技术学报》 EI CSCD 北大核心 2017年第3期313-319,共7页
基于图优化的即时定位与同步构图(SLAM)方法是在视觉里程计运动估计的基础上通过增加一个回环检测,从而对非线性多约束进行优化来提高定位精度。在视觉运动估计中,针对视觉特征点匹配错误率高的问题,提出了一种ORB特征点聚类抽样匹配跟... 基于图优化的即时定位与同步构图(SLAM)方法是在视觉里程计运动估计的基础上通过增加一个回环检测,从而对非线性多约束进行优化来提高定位精度。在视觉运动估计中,针对视觉特征点匹配错误率高的问题,提出了一种ORB特征点聚类抽样匹配跟踪的方法。在位姿图优化上,提出了一种改进型的回环检测方法,减少了两种错误匹配的可能性。最后将视觉SLAM与惯性导航进行组合,提高了系统的稳定性和定位精度。使用公开的室内SLAM测试数据集进行仿真,结果表明,该方法的定位均方根误差在厘米级,生成的点云地图清晰可见。 展开更多
关键词 即时定位与同步构图 图优化 聚类抽样 回环检测 组合定位
在线阅读 下载PDF
大规模环境下基于图优化SLAM的图构建方法 被引量:31
20
作者 王忠立 赵杰 蔡鹤皋 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2015年第1期75-85,共11页
分析总结了基于图优化同步定位和地图构建(SLAM)前端图构建过程的各种方法.对现有SLAM研究方法进行分类,指出基于Kalman滤波器、粒子滤波器、图优化方法的优缺点;重点介绍SLAM问题的3种图建模方法,即动态贝叶斯网络的图建模方法、基于... 分析总结了基于图优化同步定位和地图构建(SLAM)前端图构建过程的各种方法.对现有SLAM研究方法进行分类,指出基于Kalman滤波器、粒子滤波器、图优化方法的优缺点;重点介绍SLAM问题的3种图建模方法,即动态贝叶斯网络的图建模方法、基于因子图的建模方法、基于Markov随机场的建模方法;对图优化SLAM方法前端图构建的核心环节——帧间数据关联和环形闭合检测方法进行了分析;讨论了特征提取、特征匹配、运动估计、环形闭合检测等方面的最新研究成果. 展开更多
关键词 移动机器人 同步定位与建图 动态贝叶斯网络 图建模 数据关联
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部