It is illegal to spread and transmit pornographic images over internet,either in real or in artificial format.The traditional methods are designed to identify real pornographic images and they are less efficient in de...It is illegal to spread and transmit pornographic images over internet,either in real or in artificial format.The traditional methods are designed to identify real pornographic images and they are less efficient in dealing with artificial images.Therefore,criminals turn to release artificial pornographic images in some specific scenes,e.g.,in social networks.To efficiently identify artificial pornographic images,a novel bag-of-visual-words based approach is proposed in the work.In the bag-of-words(Bo W)framework,speeded-up robust feature(SURF)is adopted for feature extraction at first,then a visual vocabulary is constructed through K-means clustering and images are represented by an improved Bo W encoding method,and finally the visual words are fed into a learning machine for training and classification.Different from the traditional BoW method,the proposed method sets a weight on each visual word according to the number of features that each cluster contains.Moreover,a non-binary encoding method and cross-matching strategy are utilized to improve the discriminative power of the visual words.Experimental results indicate that the proposed method outperforms the traditional method.展开更多
针对如何准确获取位姿信息来实现移动机器人的避障问题,提出一种可用于实时获取移动机器人位姿的单目视觉里程计算法。该算法利用单目摄像机获取连续帧间图像路面SURF(Speeded Up Robust Features)特征点;并结合极线几何约束来解决路面...针对如何准确获取位姿信息来实现移动机器人的避障问题,提出一种可用于实时获取移动机器人位姿的单目视觉里程计算法。该算法利用单目摄像机获取连续帧间图像路面SURF(Speeded Up Robust Features)特征点;并结合极线几何约束来解决路面特征点匹配较难的问题,通过计算平面单应性矩阵获取移动机器人的位姿变化。实验结果表明该算法具有较高的精度和实时性。展开更多
基金Projects(41001260,61173122,61573380) supported by the National Natural Science Foundation of ChinaProject(11JJ5044) supported by the Hunan Provincial Natural Science Foundation of China
文摘It is illegal to spread and transmit pornographic images over internet,either in real or in artificial format.The traditional methods are designed to identify real pornographic images and they are less efficient in dealing with artificial images.Therefore,criminals turn to release artificial pornographic images in some specific scenes,e.g.,in social networks.To efficiently identify artificial pornographic images,a novel bag-of-visual-words based approach is proposed in the work.In the bag-of-words(Bo W)framework,speeded-up robust feature(SURF)is adopted for feature extraction at first,then a visual vocabulary is constructed through K-means clustering and images are represented by an improved Bo W encoding method,and finally the visual words are fed into a learning machine for training and classification.Different from the traditional BoW method,the proposed method sets a weight on each visual word according to the number of features that each cluster contains.Moreover,a non-binary encoding method and cross-matching strategy are utilized to improve the discriminative power of the visual words.Experimental results indicate that the proposed method outperforms the traditional method.
文摘针对如何准确获取位姿信息来实现移动机器人的避障问题,提出一种可用于实时获取移动机器人位姿的单目视觉里程计算法。该算法利用单目摄像机获取连续帧间图像路面SURF(Speeded Up Robust Features)特征点;并结合极线几何约束来解决路面特征点匹配较难的问题,通过计算平面单应性矩阵获取移动机器人的位姿变化。实验结果表明该算法具有较高的精度和实时性。