一当场,自我本地化系统为在有深入的 3D 里程碑的 3D 环境起作用的活动机器人被开发。机器人通过合并从 odometry 和单向性的照相机收集的信息的一个地图评估者递归地估计它的姿势。我们为这二个传感器造非线性的模型并且坚持说机器人...一当场,自我本地化系统为在有深入的 3D 里程碑的 3D 环境起作用的活动机器人被开发。机器人通过合并从 odometry 和单向性的照相机收集的信息的一个地图评估者递归地估计它的姿势。我们为这二个传感器造非线性的模型并且坚持说机器人运动和不精密的传感器大小的无常操作应该全部被嵌入并且追踪我们的系统。我们在一个概率的几何学观点和使用 unscented 变换描述无常框架宣传无常,它经历给定的非线性的功能。就我们的机器人的处理力量而言,图象特征在相应投射特征的附近被提取。另外,数据协会被统计距离评估。最后,一系列系统的实验被进行证明我们的系统的可靠、精确的性能。展开更多
As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from bo...As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from both its environment and other agents,an agent can use various methods and sensor types to localize itself.With its high flexibility and robustness,collaborative positioning has become a widely used method in both military and civilian applications.This paper introduces the basic fundamental concepts and applications of collaborative positioning,and reviews recent progress in the field based on camera,LiDAR(Light Detection and Ranging),wireless sensor,and their integration.The paper compares the current methods with respect to their sensor type,summarizes their main paradigms,and analyzes their evaluation experiments.Finally,the paper discusses the main challenges and open issues that require further research.展开更多
基金Supported by National Natural Science Foundation of China(60605023,60775048)Specialized Research Fund for the Doctoral Program of Higher Education(20060141006)
文摘一当场,自我本地化系统为在有深入的 3D 里程碑的 3D 环境起作用的活动机器人被开发。机器人通过合并从 odometry 和单向性的照相机收集的信息的一个地图评估者递归地估计它的姿势。我们为这二个传感器造非线性的模型并且坚持说机器人运动和不精密的传感器大小的无常操作应该全部被嵌入并且追踪我们的系统。我们在一个概率的几何学观点和使用 unscented 变换描述无常框架宣传无常,它经历给定的非线性的功能。就我们的机器人的处理力量而言,图象特征在相应投射特征的附近被提取。另外,数据协会被统计距离评估。最后,一系列系统的实验被进行证明我们的系统的可靠、精确的性能。
基金National Natural Science Foundation of China(Grant No.62101138)Shandong Natural Science Foundation(Grant No.ZR2021QD148)+1 种基金Guangdong Natural Science Foundation(Grant No.2022A1515012573)Guangzhou Basic and Applied Basic Research Project(Grant No.202102020701)for providing funds for publishing this paper。
文摘As positioning sensors,edge computation power,and communication technologies continue to develop,a moving agent can now sense its surroundings and communicate with other agents.By receiving spatial information from both its environment and other agents,an agent can use various methods and sensor types to localize itself.With its high flexibility and robustness,collaborative positioning has become a widely used method in both military and civilian applications.This paper introduces the basic fundamental concepts and applications of collaborative positioning,and reviews recent progress in the field based on camera,LiDAR(Light Detection and Ranging),wireless sensor,and their integration.The paper compares the current methods with respect to their sensor type,summarizes their main paradigms,and analyzes their evaluation experiments.Finally,the paper discusses the main challenges and open issues that require further research.